
Boosting Neural Commit Message Generation with
Code Semantic Analysis

Shuyao Jiang
School of Computer Science, Fudan University, Shanghai, China

Shanghai Institute of Intelligent Electronics & Systems, Shanghai, China

Abstract—It has been long suggested that commit messages
can greatly facilitate code comprehension. However, developers
may not write good commit messages in practice. Neural ma-
chine translation (NMT) has been suggested to automatically
generate commit messages. Despite the efforts in improving
NMT algorithms, the quality of the generated commit messages
is not yet satisfactory. This paper, instead of improving NMT
algorithms, suggests that proper preprocessing of code changes
into concise inputs is quite critical to train NMT. We approach it
with semantic analysis of code changes. We collect a real-world
dataset with 50k+ commits of popular Java projects, and verify
our idea with comprehensive experiments. The results show that
preprocessing inputs with code semantic analysis can improve
NMT significantly. This work sheds light to how to apply existing
DNNs designed by the machine learning community, e.g., NMT
models, to complete software engineering tasks.

I. INTRODUCTION

Commit messages, usually short descriptions on the contents

and reasons of code changes, are critical to code comprehen-

sion, and in turn, software development process [1]. How-

ever, in current practice, it is quite common that developers

may write poor-quality commit messages [2], [3]. Automatic

commit message generation has long been suggested as a

viable means to solve this problem [4], [5]. Recently, with the

advancement of deep learning, extensive research efforts have

been put on applying deep neural networks (DNNs) in this

task [6], [7]. The underlying idea is that human experiences

are good resource to commit message generation. Specifically,

good, manually-written commit messages in existing projects

can help train a DNN which learns how to map code changes

to their corresponding commit messages. This mapping is

called neural machine translation (NMT), like that applied

in natural language processing [8]. Thus, given new changes,

suitable commit messages can be produced via NMT [6], [7].
Unfortunately, despite the capability of summarizing human

experiences, the state-of-the-art NMT techniques are not yet

able to produce satisfactory commit messages. Recent research

show that it can only achieve a BLEU-4 score of 14.19 in a

cleaned dataset [9], where BLEU-4 is a value typically used to

evaluate the quality of text generation [10]. How to best exploit

good, manually-written commit messages in automatic commit

message generation remains unclear. Unlike recent efforts that

attempt to improve the DNNs in NMT [11], [12], we analyze

this problem in a different perspective: We suggest that the

data we typically use to train the DNNs is inappropriate.
The key of NMT is a sequence-to-sequence mapping, basi-

cally designed for natural language translation. Hence, the na-

ture of its design is to guarantee its input and output sequences

contain similar information. However, in automatic commit

message generation, the inputs are typically code changes.

Codes are generally not concise per se to describe their

meanings, which is why we require commit messages [1]. The

lengthy, complicated codes contains far more information than

that required in NMT. We suggest that proper preprocessing

of code changes is also critical to improve NMT.

To verify our idea, we propose code semantic analysis [13],

[14] to preprocess code changes and generate more concise

inputs for NMT. This paper reports our experience in this

attempt. We collect a real-world dataset with 50k+ commits

in 18 top popular GitHub Java projects. We adopt a state-of-

the-art semantic analysis method [5] to preprocess the data.

A comprehensive evaluation is conducted to prove that data

preprocessing does improve NMT. Finally, we also open our

dataset to facilitate further research.

II. RELATED WORK

With the recent development of deep learning, NMT has

been proposed to generate commit messages automatically.

Jiang et al. [6] and Loyola et al. [7] apply the encoder-decoder

architecture to automatically generate commit messages from

code changes. Hu et al. [15] suggest NMT to summarize codes

in text. Much work has focused on improving the algorithms

in NMT for commit message generation [9], [11], [12].

This work aims at showing input preprocessing is critical

to NMT. Since the core of commit message generation is to

summarize code changes, we survey related research efforts

as follows. Code changes can be summarized by analyzing

edit distance between two code versions [16]–[19]. Codes

are typically modeled as abstract syntax tree (AST) and the

tree difference can summarize the changes [20], [21]. Recent

approaches include GumTree [22] and many improvements

[23], [24]. A recent method to analyze AST difference is

proposed by Huang et al. [25]. Code change analysis can

further help generate human-readable texts. Buse and Weimer

[4] suggest the impact of code changes on runtime can be

inferred by symbolic execution. ChangeScribe [5], [26] can fill

the predefined templates with key information in AST-based

code changes. Shen et al. [27] further suggest to polish the

results of ChangeScribe.

There are also many other measures to model codes, includ-

ing control flow graph [28] and UML class model [29]. Le et
al. [30] propose a dynamic framework to infer code changes.

1280

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-7281-2508-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ASE.2019.00162

Fig. 1. Approach Overview

Other studies [31]–[34] suggest software documents can be

used to summarize code changes.

III. TAILORING INPUTS FOR NMT-BASED COMMIT

MESSAGE GENERATION

Traditional NMT-based commit message generation typi-

cally takes raw code changes as inputs. It trains its DNN with

the code changes in commits, and their corresponding good,

manually-written commit messages in existing projects, shown

as steps (1) and (2) in Fig 1. The core idea of NMT is to learn

a best sequence-to-sequence mapping from the inputs to the

outputs. Then, given new code changes as an input sequence,

NMT can generate a new text sequence as its commit message.

As we discussed, we propose that the input to NMT

should be carefully tailored to adapt to the commit message

generation task. We suggest that code semantic analysis should

be applied to polish the code changes first into short descrip-

tions that summarize such changes. To this end, we apply

ChangeScribe [5], a well-designed semantic analysis tool to

perform such input preprocessing. The approach extracts code

changes in AST between two source-code versions. It then

identifies method stereotypes [35] and commit stereotypes

[36] by analyzing the AST. The stereotypes describe the main

behavior of this commit. Finally, it generates summary texts

by filling a predefined template.

Note that the summary texts generalized by ChangeScribe

are not instantly ready as commit messages. The reason

is straight-forward: ChangeScribe simply enumerates code

changes without describing their purposes. Hence we adopt

NMT which, learning from previous human experiences, trans-

lates the summary texts into more meaningful messages.

Finally, similarly as in traditional NMT-based commit mes-

sage generation, our approach also trains a DNN with the pre-

processed code changes in commits, and their corresponding

good, manually-written commit messages in existing projects,

shown as steps (1), (3), and (4) in Fig 1. Next, we present our

experimental study to verify our idea with real-world cases.

IV. EXPERIMENTAL STUDY

We collect 18 popular Java projects from GitHub. Each

project has accumulated 20k+ stars (positive user comments),

contains 100k+ lines of codes and 3k+ commits averagely.

We use ChangeScribe to summarize code changes for each

commit. We also preprocess the data with the following steps:

Fig. 2. Cross entropy loss scores on the test set

1) deleting labels and redundant statements in summary texts;

2) clearing empty texts; 3) limiting the text length to 100.

The dataset has 50k+ commits in total. We select 45k+

for training NMT methods, 2.5k for testing, and 2.5k for

validation with systematic sampling method. Our dataset is

released on https://github.com/ShuyaoJiang/CommitDataset.
We use Nematus [37] to train the NMT models due to its

robustness, usability, and excellent performance [38]. Its DNN

architecture is attentional RNN encoder-decoder, a state-of-

the-art model for the NMT task. We train two models, namely,

CS40 and CS15 based on our polished, short summary of code

changes with ChangeScribe. The two models are both based

on Nematus with batch size values 40 and 15. For comparison

purpose, we also train a model with raw code changes, namely,

DIFF40, based on Nematus with batch size value 40.
We use cross entropy loss and BLEU [10] to evaluate

the model performance on the test set. Figure 2 shows the

results of the cross entropy loss values. Our approach can

obtain more commit messages with low cross entropy loss.

In other words, more results of CS40 and CS15 are similar

to human-written commit messages than those of DIFF40.

Table I further shows that CS40 has the highest BLEU scores,

indicating it outperforms DIFF40. It further confirms that input

preprocessing is helpful to NMT.

TABLE I
BLEU SCORES ON THE TEST SET

Model BLEU-4 p1 p2 p3 p4

CS40 1.10 4.7 1.7 0.5 0.4
CS15 0.44 9.1 3.2 0.1 0.0

DIFF40 0.41 3.9 0.9 0.1 0.1

pn is the modified n-gram precision used to calculate BLEU-4 [10].

V. CONCLUSION

This paper contributes to the promising line of research

that considers codes as sequences and conducts machine code-

comprehension with deep learning. We show the importance

of tailoring the inputs. It is promising that tremendous existing

DNNs designed by the machine learning community, e.g.,
NMT models, can be instantly adopted, with task-specifically-

tailored inputs, to complete software engineering tasks.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science

Foundation of China (Project No. 61672164) and a CERNET

Innovation Project (No. NGII20180110).

1281

REFERENCES

[1] P. Hallam, “What do programmers really do anyway,” Microsoft Devel-
oper Network (MSDN) C# Compiler, 2006.

[2] W. Maalej and H.-J. Happel, “Can development work describe itself?”
in Proc. of the 7th IEEE Working Conference on Mining Software
Repositories (MSR), 2010, pp. 191–200.

[3] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “BOA: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in Proc. of International Conference on Software Engineering, 2013, pp.
422–431.

[4] R. P. Buse and W. Weimer, “Automatically documenting program
changes.” in ASE, vol. 10, 2010, pp. 33–42.

[5] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk,
“On automatically generating commit messages via summarization of
source code changes,” in Proc. of the 14th IEEE International Working
Conference on Source Code Analysis and Manipulation, 2014, pp. 275–
284.

[6] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in Proc.
of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, 2017, pp. 135–146.

[7] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neural architecture for
generating natural language descriptions from source code changes,”
arXiv preprint arXiv:1704.04856, 2017.

[8] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[9] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are we?”
in Proc. of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 373–384.

[10] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a method
for automatic evaluation of machine translation,” in Proc. of the 40th
Annual Meeting on Association for Computational Linguistics, 2002, pp.
311–318.

[11] S. Gao, C. Chen, Z. Xing, Y. Ma, W. Song, and S. Lin, “A neural model
for method name generation from functional description,” in Proc. of the
26th IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2019, pp. 414–421.

[12] H. Yu, W. Lam, L. Chen, G. Li, T. Xie, and Q. Wang, “Neural detection
of semantic code clones via tree-based convolution,” in Proc. of the 27th
International Conference on Program Comprehension, 2019, pp. 70–80.

[13] G. Cosma and M. Joy, “An approach to source-code plagiarism detection
and investigation using latent semantic analysis,” IEEE Transactions on
Computers, vol. 61, no. 3, pp. 379–394, 2011.

[14] A. Kuhn, S. Ducasse, and T. Gı́rba, “Semantic clustering: Identifying
topics in source code,” Information and Software Technology, vol. 49,
no. 3, pp. 230–243, 2007.

[15] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment genera-
tion,” in Proc. of the 26th ACM Conference on Program Comprehension,
2018, pp. 200–210.

[16] W. Miller and E. W. Myers, “A file comparison program,” Software:
Practice and Experience, vol. 15, no. 11, pp. 1025–1040, 1985.

[17] S. Reiss, “Tracking source locations,” in Proc. of the 30th ACM/IEEE
International Conference on Software Engineering, 2008, pp. 11–20.

[18] G. Canfora, L. Cerulo, and M. Di Penta, “Tracking your changes: A
language-independent approach,” IEEE Software, vol. 26, no. 1, pp. 50–
57, 2009.

[19] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and M. Di Penta, “Lhdiff:
A language-independent hybrid approach for tracking source code lines,”
in Proc. of IEEE International Conference on Software Maintenance,
2013, pp. 230–239.

[20] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,” IEEE
Transactions on Software Engineering, vol. 33, no. 11, pp. 725–743,
2007.

[21] M. Hashimoto and A. Mori, “Diff/ts: A tool for fine-grained structural
change analysis,” in Proc. of the 15th Working Conference on Reverse
Engineering, 2008, pp. 279–288.

[22] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proc. of the
29th ACM/IEEE International Conference on Automated Software En-
gineering, 2014, pp. 313–324.

[23] Y. Higo, A. Ohtani, and S. Kusumoto, “Generating simpler ast edit
scripts by considering copy-and-paste,” in Proc. of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, 2017, pp.
532–542.

[24] G. Dotzler and M. Philippsen, “Move-optimized source code tree
differencing,” in Proc. of the 31st IEEE/ACM International Conference
on Automated Software Engineering, 2016, pp. 660–671.

[25] K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu, and W. Zhao,
“Cldiff: generating concise linked code differences,” in Proc. of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, 2018, pp. 679–690.

[26] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk,
“Changescribe: A tool for automatically generating commit messages,”
in Proc. of the 37th IEEE/ACM International Conference on Software
Engineering, vol. 2, 2015, pp. 709–712.

[27] J. Shen, X. Sun, B. Li, H. Yang, and J. Hu, “On automatic summarization
of what and why information in source code changes,” in 2016 IEEE
40th Annual Computer Software and Applications Conference (COMP-
SAC), vol. 1, 2016, pp. 103–112.

[28] T. Apiwattanapong, A. Orso, and M. J. Harrold, “A differencing algo-
rithm for object-oriented programs,” in Proc. of the 19th International
Conference on Automated Software Engineering. IEEE, 2004, pp. 2–13.

[29] Z. Xing and E. Stroulia, “Umldiff: an algorithm for object-oriented
design differencing,” in Proc. of the 20th IEEE/ACM international
Conference on Automated software engineering, 2005, pp. 54–65.

[30] T.-D. B. Le, J. Yi, D. Lo, F. Thung, and A. Roychoudhury, “Dynamic
inference of change contracts,” in Proc. of the IEEE International
Conference on Software Maintenance and Evolution, 2014, pp. 451–
455.

[31] S. Rastkar and G. C. Murphy, “Why did this code change?” in Proc.
of International Conference on Software Engineering, 2013, pp. 1193–
1196.

[32] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Automatic generation of release notes,” in Proc. of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014, pp. 484–495.

[33] ——, “Arena: an approach for the automated generation of release
notes,” IEEE Transactions on Software Engineering, vol. 43, no. 2, pp.
106–127, 2017.

[34] Y. Huang, Q. Zheng, X. Chen, Y. Xiong, Z. Liu, and X. Luo, “Mining
version control system for automatically generating commit comment,”
in Proc. of the 11th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, 2017, pp. 414–423.

[35] N. Dragan, M. L. Collard, and J. I. Maletic, “Reverse engineering
method stereotypes,” in Proc. of the 22nd IEEE International Conference
on Software Maintenance, 2006, pp. 24–34.

[36] N. Dragan, M. L. Collard, M. Hammad, and J. I. Maletic, “Using
stereotypes to help characterize commits,” in Proc. of the 27th IEEE
International Conference on Software Maintenance (ICSM), 2011, pp.
520–523.

[37] R. Sennrich, O. Firat, K. Cho, A. Birch, B. Haddow, J. Hitschler,
M. Junczys-Dowmunt, S. Läubli, A. V. M. Barone, J. Mokry et al.,
“Nematus: a toolkit for neural machine translation,” arXiv preprint
arXiv:1703.04357, 2017.

[38] R. Sennrich, B. Haddow, and A. Birch, “Edinburgh neural machine
translation systems for wmt 16,” arXiv preprint arXiv:1606.02891, 2016.

1282

