ASE19-SRC-23

Boosting Neural Commit Message
Generation with Code Semantic Analysis

Shuyao Jiang
Fudan University, Shanghai, China

Introduction

Modern Software

* Huge amount of codes, frequent upgrades,
and numerous team members

* Code comprehension is critical

* Nearly 80% of development time is spent in
understanding code!!

[1] P. Hallam. "What do programmers really do anyway".
Microsoft Developer Network (MSDN)—C# Compiler, 2006.

Update Write
Existing B New Code
Code 2%

20%

Understand
Code
78%

m Understand Code
m Update Existing Code
m Write New Code

A Hot Line of Research: Codes = Human language

* Example: commit messages
* A short natural language description
* Summarizing the contents and reasons of code changes

e Question: How to automatically generate descriptions of code changes

for(int i=0; i<len; i++)
{

int min_index = 1i;

for(int j=i+1; j<len; j++)

if(arraylmin_index] > arrayl[jl) # 7
min_index = j; ¢
if(min_index !'= i)
Swap (array+min_index,array+i);

Current State-of-the-art Approaches

* With machine learning techniques

* “Codes = Human language" is a translation problem, i.e., seq2seq

High quality
codes/description
pairs

\

Learning the

codes/description ‘

relationship

=)

J

Codes

Core idea: seg2seq

Descriptions

Neural Machine Translation (NMT)

Use NMT to generate commit messages

* Pros:
e Can generate commit messages automatically
e Can utilize past human experiences (in training cases)

 Cons:

* Generally suitable for inputs/outputs with comparable lengths
e But code diffs are too lengthy: containing too much noisy information

+++ b/guava-tests/test/
com/google/common/
base/EquivalenceTest.java,

+ import —>
com.google.common.

testing.NullPointerTester;,

+ public void testEquals() { G

Diff

‘ Applied package sanity tests to common/base
Commit Message

Key Notion of Our Proposal: Data Preprocessing

Code Semantic Analysis
-

I

Code Semantic Analysis

| --

Learning the
summary/message
relationship

High quality
diff/message
pairs

Neural Machine Translation (NMT)

How to Preprocess Data

* Code Semantic Analysis

* Code diffs = Abstract syntax tree (AST) = Template-based description

* Lengthy code diffs = short descriptions

class A{
String af= "

void am() {

MethodInvocation

static class B{ Binary
void bm(String arg) {} FieldA
}
}
Code AST

This change set is mainly composed of:
1. Changes to package ...

1.1. Modifications to ...

1.1.1. Add a constructor method

The added/removed methods
triggered changes to ...

Summary Text

Implementation and Experiments - Tool

e Our tool implementation / 4 modules
* Collection: Automatically collect all the commits of each project of interest
* Dataset construction details in next page

* Analysis: For each commit, perform semantic analysis of code diffs
* Based on ChangeScribe (http://www.cs.wm.edu/semeru/changescribe/)

* Generation: Generate descriptions of all the commits
e With deep neural networks
* Testing: NMT model testing (quantification & case study)

e Last for 6 months: 2019.01- 2019.06

* Most of the time: used to read papers ©, and to read codes of ChangeScribe

http://www.cs.wm.edu/semeru/changescribe/

Implementation and Experiments - Dataset

* Consideration
* High-quality codes with high-quality commit messages
* So, we collect 18 projects from GitHub (50k+ commits)
* Popular: each with 20k+ stars
* Large-scale: each with 100k+ code lines, 3k+ commits
* Diverse: including projects on mobile development, web application, Java
core library, etc.

* Collect all the commits (code diffs and commit messages)

e Dataset and tool Online available
* https://github.com/Shuyaoliang/CommitDataset
* Facilitate further follow-up research

https://github.com/ShuyaoJiang/CommitDataset

Model Training

Code Semantic Analysis

-

&

long

=)

shorter

~N

J

1

Many high

quality
diff/msg pairs

—

--

Our models with data preprocessing
e CS40: batch size 40
e CS15: batch size 15

Commit
Messages

Comparatlve model without data preprocessing
* DIFF40: batch size 40

Evaluation Results

* Cross Entropy
 Measuring the difference between two probability distributions
* The lower, the better (closer to the human-written commit messages)

Cross Entropy Distribution

1400

1200
1000 ®CS40
800 ®CS15
600 DIFF40
400
|]
1

[O 1) [1.5) [5,10) [10 ®)
Cross Entropy Scores

Number of Samples

o O

CS40 has more good results DIFF40 has more bad results

Evaluation Results
e BLEU Scores

* Measuring the similarity between source and target sequence
* The higher, the better (more similar to human-written commit messages)

BLEU Scores
Model BLEU-4 p, P> P3 P4
CS40 <110 47 17 05 04> —>
CS15 0.44 9.1 32 0.1 0.0
DIFF40 0.41 39 09 0.1 0.1

prn 18 the modified n-gram precision used to calculate BLEU-4

e Results

* Data preprocessing with AST analysis is effective!

Our CS40 has the highest
BLEU score

Translation Example

Diff:

+++ b/guava-tests/test/com/google/
common/base/EquivalenceTest.java,
+ import com.google.common.
testing.NullPointerTester;,

+ public void testEquals() {

Summary Text:

Changes to package
com.google.common.base: Add a
class for package sanity tests. It
allows to: Instantiate package sanity
tests.

DIFF40 result:
Add <UNK>

Our CS40 result:
Add support for task properties

)
)

(

Conclusions

* We suggest that data preprocessing is critical to commit message
generation with NMT.

* We apply code semantic analysis to tailor NMT inputs in commit message
generation.

* We conduct a comprehensive evaluation to prove that data preprocessing
does improve NMT.

* This work sheds light to how to properly apply existing DNN models
in software engineering tasks.

