
Boosting Neural Commit Message
Generation with Code Semantic Analysis

Shuyao Jiang
Fudan University, Shanghai, China

ASE19-SRC-23

Introduction

Modern Software
• Huge amount of codes, frequent upgrades,

and numerous team members
• Code comprehension is critical
• Nearly 80% of development time is spent in

understanding code[1]

Understand
Code
78%

Update
Existing

Code
20%

Write
New Code

2%

Understand Code
Update Existing Code
Write New Code[1] P. Hallam. "What do programmers really do anyway".

Microsoft Developer Network (MSDN)—C# Compiler, 2006.

A Hot Line of Research: Codes à Human language
• Example: commit messages
• A short natural language description
• Summarizing the contents and reasons of code changes

• Question: How to automatically generate descriptions of code changes

？

Current State-of-the-art Approaches
• With machine learning techniques
• “Codes à Human language" is a translation problem, i.e., seq2seq

High quality
codes/description

pairs

Learning the
codes/description

relationship

Codes

Descriptions

Core idea: seq2seq

Neural Machine Translation (NMT)

Use NMT to generate commit messages
• Pros:
• Can generate commit messages automatically
• Can utilize past human experiences (in training cases)

• Cons:
• Generally suitable for inputs/outputs with comparable lengths

• But code diffs are too lengthy: containing too much noisy information

NMT

+++ b/guava-tests/test/
com/google/common/
base/EquivalenceTest.java,
+ import
com.google.common.
testing.NullPointerTester;,
+ public void testEquals() {
…

Applied package sanity tests to common/base

Diff

Commit Message

Key Notion of Our Proposal: Data Preprocessing

Summary Texts

Commit
Messages

Code Semantic Analysis

Diffs Summary Texts

long shorter

Code Semantic Analysis

High quality
diff/message

pairs

Learning the
summary/message

relationship

Code Changes

Neural Machine Translation (NMT)

How to Preprocess Data
• Code Semantic Analysis
• Code diffs à Abstract syntax tree (AST) à Template-based description
• Lengthy code diffs à short descriptions

This change set is mainly composed of:
1. Changes to package …
1.1. Modifications to …
1.1.1. Add a constructor method
The added/removed methods
triggered changes to …

Code AST Summary Text

Implementation and Experiments - Tool
• Our tool implementation / 4 modules
• Collection: Automatically collect all the commits of each project of interest

• Dataset construction details in next page
• Analysis: For each commit, perform semantic analysis of code diffs

• Based on ChangeScribe (http://www.cs.wm.edu/semeru/changescribe/)
• Generation: Generate descriptions of all the commits

• With deep neural networks
• Testing: NMT model testing (quantification & case study)

• Last for 6 months: 2019.01– 2019.06
• Most of the time: used to read papers J, and to read codes of ChangeScribe

http://www.cs.wm.edu/semeru/changescribe/

Implementation and Experiments - Dataset
• Consideration
• High-quality codes with high-quality commit messages

• So, we collect 18 projects from GitHub (50k+ commits)
• Popular: each with 20k+ stars
• Large-scale: each with 100k+ code lines, 3k+ commits
• Diverse: including projects on mobile development, web application, Java

core library, etc.

• Collect all the commits (code diffs and commit messages)
• Dataset and tool Online available

• https://github.com/ShuyaoJiang/CommitDataset
• Facilitate further follow-up research

https://github.com/ShuyaoJiang/CommitDataset

Code Semantic Analysis

Our models with data preprocessing
• CS40: batch size 40
• CS15: batch size 15

Commit
Messages

Diffs Summary
Texts

long shorter

Many high
quality

diff/msg pairs
NMT

Comparative model without data preprocessing
• DIFF40: batch size 40

Model Training

Evaluation Results
• Cross Entropy
• Measuring the difference between two probability distributions
• The lower, the better (closer to the human-written commit messages)

Cross Entropy Distribution

CS40 has more good results DIFF40 has more bad results

Evaluation Results
• BLEU Scores
• Measuring the similarity between source and target sequence
• The higher, the better (more similar to human-written commit messages)

• Results
• Data preprocessing with AST analysis is effective!

Our CS40 has the highest
BLEU score

BLEU Scores

Translation Example

Diff:
+++ b/guava-tests/test/com/google/
common/base/EquivalenceTest.java,
+ import com.google.common.
testing.NullPointerTester;,
+ public void testEquals() {
…
DIFF40 result:
Add <UNK>

Summary Text:
Changes to package
com.google.common.base: Add a
class for package sanity tests. It
allows to: Instantiate package sanity
tests.

Our CS40 result:
Add support for task properties

Conclusions

• We suggest that data preprocessing is critical to commit message
generation with NMT.
• We apply code semantic analysis to tailor NMT inputs in commit message

generation.
• We conduct a comprehensive evaluation to prove that data preprocessing

does improve NMT.

• This work sheds light to how to properly apply existing DNN models
in software engineering tasks.

