The 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023)

Revealing Performance Issues in Server-side
WebAssembly Runtimes via Differential Testing

Shuyao Jiang', Ruiying Zeng?, Zihao Rao?, Jiazhen Gu', Yangfan Zhou?, Michael R. Lyu’
1. Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
2. School of Computer Science, Fudan University, Shanghai, China

(; ARISE

AtmthIbIItIIg nt
Software Engine

l/ /
. HEr P LKZF § (Z 7 k %
{_ The Chinese Umver51ty of Hong Kong & s -

{902 FUDAN UNIVERSITY

—\!Illl

=

2» WebAssembly (Wasm)

* A low-level bytecode format
 Fast, safe, portable
» Support in both browsers and server-side apps

6100 6d73 0001 0000 / Client-side

0ad1 6002 7f01 6000
7f02 007f 0do2
6f68 7473 ... : -- 0
Wasm bytecode
Server-side

Source programs

A/

I Server-side Wasm Workflow

« Key component: Standalone \WWasm runtimes

Compilation Execution

"% emscripten
1

——
=

Source Wasm
program bytecode

Standalone Operating
Wasm runtime system

J» Performance Issues in Server-side Wasm

* The impact of performance issues on « Standalone Wasm runtimes are still
the server side is usually greater than immature and more likely to cause
that on the client side. performance issues.

\\\\\‘\'l'l'[;/’,
§ 2
'~ -
Z, S
% >

C

A short latency

’ N
Y 4
e RN
E k-
Client-side apps Server-side apps

v ® X

Major browsers: Well-developed

BYTECODE
o « ALLIANCE

ﬁl Wasmer WasmEdge

Standalone Wasm runtimes: Immature

I Impact of Performance Issues: A Real Case

« Impact of WasmEdge runtime latency on service throughput
» Service: microservice-rust-mysql

18000 A
16000

=== 500 concurrency
w1000 concurrency
= 2000 concurrency
=== 3000 concurrency

=== 500 concurrency
== 1000 concurrency
=== 2000 concurrency

16000
14000 -

[
F-3
o
o
o

==m=s 3000 concurrency

12000 -

8000 -
6000 -

12000 +

10000 -

8000 -

[
~N

6000 -

Average Throughput (req/s)
Average Throughput (req/s)

== e e— I e
| | | | . | | 4000 - ' ' ' ' ' ' ‘_" '
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Latency (ms) Latency (ms)
(a) 10,000 request (a) 50,000 request

A 30ms-latency will result in a 20% to 50% drop in service throughput!

https://github.com/second-state/microservice-rust-mysql

» Challenges & Solutions

* Our goal: Revealing performance issues in standalone Wasm runtimes

A Challenge: Hard to manually analyze each Wasm runtime

v

Solution: Adopt the idea of differential testing

A Challenge: Determine the oracle of performance issues

v

Solution: Propose an oracle ratio that reflects the systematic
performance gaps among different Wasm runtimes

» Approach: WarpDiff

« Wasm Runtime Performance Differential Testing

—_ — == | o
> = O
! é 0.2 Performance data

Testcasel Wasm code 1l Runtime 1 of test case 1

i I
| ! '
| ' '
| ' :
l ' :

I | I) :

=] _ [| | = e

= > | :
! 101001 : I I
— : Performance data |
Testcase2 Wasm code 2 : | I r':_

LI] I I I
| l :
| l :
| l :
| ' '
| ' '
I

Oracle ratio

"z c%*

Performance
issue 1

Runtime 2 of test case 2

Runtime m

->
C++

S

Performance
issue 2

Search space

-
=2 (101001

Testcasen Wasm code n

—

E—

S—

Abnormal case 2

Performance data
of test case n

Performance Data Collection Issue Location

I Phase 1: Performance Data Collection

 Test case selection
« Well supported by standalone Wasm runtimes
* More likely to trigger performance issues

 \Wasm code execution

» Compile to Wasm =» Execute on different runtimes
 Ensure the correctness of the execution results

« Performance data recording

* Three running stages

, Start Time l Code Loaded |

Code Execution I

Process__exec

RT Main

Start Execution

Process__exit

—————
I ~ TN

—

&

=

=l
= > =

Testcase1l Wasm codel Runtime 1 of test ca

o —

Performance data

sel

——

=

Runtime 2 of test ca

Runtimem | of test ca

Testcase2 Wasm code 2

Testcasen Wasm coden

= [|—>

Performance Data Collection

& -
|:> Performance data

se 2

Performance data

sen

I Phase 2: Abnormal Case Identification

Key insight: The execution time of the same test case on different Wasm runtimes

should follow a stable ratio (i.e., oracle ratio) in normal cases.

How to represent the execution time ratio?

* Vectorization for each test case

* e.g., case x ran for 1s, 2s, 3s on three runtimes =
the vector of x is [1,2,3] = normalization

How to determine the oracle ratio?

* Take the center of all normalized vectors as the
estimated oracle ratio

Calculate the distance between a case vector
and the estimated oracle ratio

o —
M —]
—]

&3

=

Performance data
of test case 1

=

Performance data
of test case 2

~————

((UE

&3

=

Performance data
of test case n

Oracle ratio

Search space

C++

Abnormal case 2

I Phase 3: Performance Issue Location

» Goal: Locate the runtime in which the performance issue occurs

« For each dimension in the case vector, adjust its value to make
the case vector closest to the estimated oracle ratio

» Record the adjustment value as deviation degree

» Analyze the impact of each runtime on the abnormal case E S i%
o \i/,

Abnormal case 1 Performance

issue 1

> +*

Performance
issue 2

 Treat the runtime with the largest deviation degree as the
Issue-related runtime Abnormal case 2

=] .

Issue Location

I» Research Questions

RQ1: How does WarpDiff perform in identifying performance issues
in real-world standalone Wasm runtimes?

RQ2: What are the causes of the identified performance issues, and
how can we verify them?

RQ3: What is the computational overnead of differential testing in
WarpDiff ?

11

2» Experiment Settings

 Test cases « Wasm runtimes for testing
* 141 C/C++ programs from LLVM test suite * Five Wasm runtimes with top popularity and
» Valid results on 123 programs activity on GitHub
TABLE I TABLE II

INFORMATION OF OUR TEST CASES FROM THE LLVM TEST SUITE. INFORMATION OF WASM RUNTIMES FOR TESTING.
Benchmark #Program #LOC’| Benchmark #Program #LOC Runtime #GitHub Stars” Test Version Execution Mode
Adobe-C-++ 6 1,615 | Misc-C++ 7 1,322
BenchmarkGame 8 486 | Misc-C++EH 1 16,817 Wasmer 15.1k 3.2.0 AOT
CoyoteBench 4 1,471 | Polybench 30 4,364 Wasmtime 12.1k cli 8.0.0 AOT
Dhrystone 2 642 | Shootout 14 573 Wasm3 6k v0.5.0 Interpreter
Linpa}ck 1 693 Shootout-C++ 25 783 WasmEdge 5.9k 0.12.0 AOT
McGill 4 956 | SmallPT 1 96 WAMR 3.7k 1.1.2 Interpreter/AOT
Misc 27 5,052 | Stanford 11 1,135

| Total 141 36,005 * Statistics of Github stars is by April 2023.

* LOC: lines of code.

12

2» RQ1: Identifying Performance Issues

« Top 10 abnormal cases

« Based on the descending order of the deviation degree of the issue-related runtime

TABLE III
Deviation degree OF EACH RUNTIME SETTING ON THE TOP 10 ABNORMAL CASES.

Case Wasmer Wasmtime Wasm3 Wasm3_compile WasmEdge WAMR WAMR_AOT
BenchmarkGame/fasta.c 0.702 0.113 -0.248 -0.244 0.082 -0.270 0.081
Shootout/methcall.c -0.051 -0.028 -0.164 -0.164 0.502 0.044 -0.014
Shootout—-C++/methcall.cpp -0.036 -0.031 -0.126 -0.128 0.415 0.072 -0.009
Shootout/random.c 0.075 0.315 -0.060 -0.060 0.079 -0.026 0.101
Shootout-C++/random. cpp 0.096 0.309 -0.063 -0.063 0.098 -0.036 0.121
Polybench/2mm.c -0.038 -0.039 -0.151 -0.149 -0.035 0.268 0.003
Polybench/gemm.c -0.038 -0.041 -0.145 -0.153 -0.036 0.267 0.007
Polybench/3mm.c -0.037 -0.040 -0.145 -0.140 -0.034 0.261 0.005
Misc/flops-8.c -0.019 0.012 -0.142 -0.142 -0.009 0.251 0.015
Misc/flops-4.c 0.234 -0.003 -0.127 -0.127 -0.019 0.168 0.001

Performance issues are common in existing standalone Wasm runtimes.

13

» RQ2: Case Analysis

« Abnormal stage location = Fine-grained cause location = Cause verification

TABLE IV
SUMMARY OF PERFORMANCE ISSUES RELATED TO THE 10 ABNORMAL CASES.

Case Related Runtime Issue ID Cause of Performance Issue Status
BenchmarkGame/fasta.c Wasmer #3784 Improper implementation of fd_write Confirmed
Misc/flops-4.c Wasmer #3821 Version issue of the Cranelift code generator Confirmed
Shootout/methcall.c WasmEdge #2444 Improper handling when invoking function pointer Confirmed
Shootout-C++/methcall.cpp WasmEdge #2442 Improper handling of virtual function Confirmed
Shootout/random.c Wasmtime . T -

Shootout—C++/random. cpp Wasmtime #6287 Insufficient optimization for division and modulo Confirmed
Polybench/2mm.c WAMR

Polybench/gemm.c WAMR #2175 Insufficient optimization for matrix multiplications Confirmed
Polybench/3mm.c WAMR

Misc/flops-8.c WAMR #2167 Insufficient optimization for complex arithmetic expressions Confirmed

We summarize 7 performance issues for the 10 abnormal cases.

14

Performance Issue in the fd_write Implementation #3784

hungryzzz opened this issue on Apr 19 - 7 comments

2» Case Analy

* Issue 1: Improper in

hungryzzz commented on Apr 19 «

Summary

Hi, I run the following case in differ
differences between wasmer and ¢
execute the wasm code(inner_moc
than which in wasmtime .

* wasmer: 136486.78 us

* wasmtime: 30420.03 us

* wasmedge(AOT): 23816.45 us
wamr(AOT): 20412.60 us

Performance Issue related to Cranelift #3821
hungryzzz opened this issue on Apr 25 - 3 comments

n

hungryzzz commented on Apr 25

Summary

Hi, I run the attached case in different Wasm runtimes(after being compiled by Emscripten), and I also find some
performance differences between wasmer and other 3 runtimes: the execution time(collected by perf-tool, probe begins

Assignees

& ptitseb

Labels

. . when starting to execute the wasm code(inner_module_run in wasmer) and end in sched:sched_process_exit) in wasmer
#include <stdio.h>
s tatlc VOld repea t_fa S t a (Char #include <sys/time.h> is 3.5x slower than which in wasmtime .
4 . Projects
Sl1zZ e_t pO S = O ’ X::::{ i:ru(t timeval timeva « wasmer: 2271270.05 us ije vet
size t len = strlen (s); ' « wasmtime: 610519.54 us
o static void repeat(int count) .
char *s2 = malloc (len + WI int ten = 50; + Wasmedge (ROT): 430803.42 us Milestone
do { * wamr (AOT): 418358.5 us -
gettimeofday(&tv, NULL);
memcpy (s2, s, len); T va.x

memcpy (s2 + len, s,
do {
size t line = MIN(WIDTH,
fwrite (s2 + pos,1,line,
putchar ('\n');
pos += line;
if (pos >= len) pos -= 1

WIDTH)

printf("sd\n", tv.tv_usec
} while (count >= 0);
i)

int main() {

repeat (500000) ;
return 0;

Hardware & 0S

* Ubuntu 20.04

Hardware & OS

* Ubuntu 20.04
* CPU: Intel(R) Core(TM) i5-9500T CPU @ 2.20GHz
* Memory: 32GB

Emscripten

* emcc (Emscripten gcc/clang-like replacement + linker emulating GNU Id) 3.1.24
0429e0bcfb6 792554350a5)
clang version 16.0.0 (https://github.com/llvm/llvm-project 277¢382760bf9575cfa2eac73d5ad1db91466d3f)
Target: wasm32-unknown-emscripten

Development

No branches or pull requests

Notifications Customize
L) Subscribe

You're not receiving notifications from this thread

4 participants

count = Line; e e
} while (count) H Emscripten Wasm runtime version
free (s2);

(a) Issue-related code snipf

e |ssue 2: Version issl

* emcc (Emscripten gcc/clang-li
(68a9f990429e0bcfb63blcde
clang version 16.0.0 (https://gi
Target: wasm32-unknown-em:
Thread model: posix

Wasm runtime version

* wasmer: wasmer 3.2.0-alpha.l
* wasmtime: wasmtime-cli 8.0.0
* wasmedge: build from commit
* wamr:iwasm 1.1.2

Additional details

I find that if | comment the 10(print
replace the fd_write function to:

* wasmer: wasmer 3.2.0
* wasmtime: wasmtime-cli 8.0.0

* wasmedage: build from commit 381b7b28049b968297e6a585b92d1cba955def66
* wamr: iwasm 1.1.2

Additional details
1find that both wasmer and wasmtime use the cranelift as default compiler. | guess maybe it's related to the different
version of cranelift. And then | try to use LLVM as the compiler (wasmer run --llvm), | get the execution time

423130.01us , which show more relation to the current cranelift in wasmer.
So is it convenient to upgrade the version of current cranelift? Or how can | do it?

flops-4.txt

(©)

© ® hungryzzz added the ' ? question | label on Apr 25

=3 ‘ ptitSeb added this to the v4.0 milestone on Apr 25

3 ‘ ptitSeb self-assigned this on Apr 25

value
F the

of count
value of count

) with parameter 500000

ce Issue #3784.

15

3 Case Analysis: WasmEdge

* Issue 3: Improper handling when invoking function pointer (#2444)
* Issue 4: Improper handling of virtual function (#2442)

#include <stdio.h>
#include <stdlib.h>

typedef struct Toggle { // define a structure of Toggle
char state;
void (*activate) (struct Toggle);

} Toggle;

void toggle activate(Toggle this) { // activate the toggle
this.state = !this.state;

}

int main() {
int i, n = 1000000;
Toggle tog;
tog.state = 1;
tog.activate = toggle activate;

for (i=0; i<n; i++) {
tog.activate(tog); // invoke the function by pointer
// toggle activate(tog); // invoke the function directly
}
puts (tog.state ? "true\n" : "false\n");
return 0;

Fig. 5. Simplified methcall.c related to Issue #2444 of WasmEdge.

3 Case Analysis: Wasmtime

* Issue 5: Insufficient optimization for division and modulo (#6287)

inline double gen random(double max) { // generate a random number
static long last = 42;

last = (last * IA + IC) % IM; // compound operations of *, + and %
return(max * last / IM); // compound operations of * and /

}

(a) Issue-related code snippet of random. c.

#include <stdio.h>

int main() {
int N = 10000000, last = 42;
while (N--) {
last = (last + 33) % 13; // compound operations of + and %
}
printf ("%d\n", last);
return (0) ;

(b) A new test case that can reproduce Issue #6287.

3 Case Analysis: WAMR

* |ssue 6: Insufficient optimization for matrix multiplications (#2175)
* Issue 7: Insufficient optimization for complex arithmetic expressions (#2167)

fpragma ScCoOf
/* D := alpha*A*B*C + beta*D */
for (i = 0; i < _PB_NI; i++)
for (j = 0; j < _PB NJ; j++)
{
tmp (i) [j] = 0;
for (k = 0; k < _PB_NK; ++k)

tmp[i] [j] += alpha * A[i][k] * B([k][j];

; 1 < _PB_NI; i++)
0; jJ < _PB_NL; j++)

D[i] [§] *= beta;
for (k = 0; k < PB NJ; ++k)

D[i] [j] += tmp[i] [k] * C[k][3]:

fpragma enascop

// alpha*A*B

// beta*D

// alpha*A*B*C + beta*D

Fig. 7. Issue-related code snippet of 2mm. c in Issue #2175 of WAMR.

/*‘k********‘k**********/

x = piref / (three * (double)m);
s = 0.0; /* Loop 9. &
vV = 0.0; /*********************/
for(i=1; i<=m-1; i++)
{

u = (double)i * x;

w=1u * u;

v = W*¥ (w* (w* (w* (w* (B6*w+B5) +B4) +B3) +B2) +B1) +one;

s = s + v¥v*u* ((((((A6*w+A5) *w+A4) *w+A3) *w+A2) *w+Al) *w+one) ;

Fig. 8. Issue-related code snippet of f1ops-8. c in Issue #2167 of WAMR.

18

» RQ3: Computational Overhead

* Running time of the differential testing part in WarpDiff

» With different numbers of runtime settings

TABLE V
COMPUTATIONAL OVERHEAD OF DIFFERENTIAL TESTING UNDER
DIFFERENT NUMBERS OF RUNTIME SETTINGS.

#Runtime |2 3 4 5 6 7
Avg. Overhead (s) | 0.330 0.476 0.604 0.735 0.845 0.966
Std. Deviation 0.026 0.039 0.047 0058 0044 0.037

The computational overhead of differential testing only
accounts for less than 0.01% of the whole process.

J» Conclusion

I Performance Issues in Server-side Wasm

» The impact of performance issues on
the server side is usually greater than
that on the client side.

i’

£

Client-side apps

e
~

Presenter: Shuyao Jiang

@

Ashort latency

7’ ~
/’ N,
~

Ry
glie
Server-side apps

® X

« Standalone Wasm runtimes are still

immature and more likely to cause
performance issues.

eCacg

Major browsers: Well-developed

e BYTECODE
B ALLIANCE

ﬂil Wasmer

WasmEdge

Standalone Wasm runtimes: Immature

Significance

3 Approach: WarpDiff

* Wasm Runtime Performance Differential Testing

s =i}

r
>

Testcase1l Wasm code 1

1

1

:

1

r i
—>amom I:D J
i

1

1

1

1

1

1

Runtime 1

Runtime 2

@iﬁ
=
)

Runtime m

Testcase2 Wasm code 2

-

- (@)

Testcasen Wasm code n

Performance Data Collection

1

1

1

1

1

1

| =4
2 verormace e
1

1 e

1

1

|

1

1

!

Performance data
of test case 1

of test case 2

Performance data
of test case n

Oracle ratio

%

Performance
issue 1

&

Performance
issue 2

Issue Location

Approach

Email: syjiang21@cse.cuhk.edu.hk

3 RQ2: Case Analysis

* Abnormal stage location = Fine-grained cause location = Cause verification

TABLE IV
SUMMARY OF PERFORMANCE ISSUES RELATED TO THE 10 ABNORMAL CASES.

Case Related Runtime Issue ID Cause of Performance Issue Status

BenchmarkGame/fasta.c Wasmer #3784 Improper implementation of £d_write Confirmed

Misc/flops—4.c Wasmer #3821 Version issue of the Cranelift code generator Confirmed

Shootout /metheall.c WasmEdge #2444 Improper handling when invoking function pointer Confirmed

Shootout-C++/methcall.cpp WasmEdge #2442 Tmproper handling of virtual function Confirmed

Shootout /random.c ‘Wasmtime - i B .

Shookout-C it /zandon. cpp ki o #6287 Insufficient optimization for division and modulo Confirmed

Polybench/2mn.c WAMR

Polybench/gemm.c WAMR #2175 Insufficient optimization for matrix multiplications Confirmed

Polybench/3mm.c WAMR

Misc/Elops—8.c WAMR #2167 Tnsufficient optimization for complex arithmetic expressions _ Confirmed

We summarize 7 performance issues for the 10 abnormal cases.

Pre-print

Results

20

mailto:syjiang21@cse.cuhk.edu.hk

