
Revealing Performance Issues in Server-side 
WebAssembly Runtimes via Differential Testing

Shuyao Jiang1, Ruiying Zeng2, Zihao Rao2, Jiazhen Gu1, Yangfan Zhou2, Michael R. Lyu1
1. Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China 

2. School of Computer Science, Fudan University, Shanghai, China

The 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023)



• A low-level bytecode format
• Fast, safe, portable
• Support in both browsers and server-side apps

2

WebAssembly (Wasm)

Source programs

Wasm bytecode

Client-side

Server-side



3

Server-side Wasm Workflow

• Key component: Standalone Wasm runtimes



• The impact of performance issues on 
the server side is usually greater than 
that on the client side.

• Standalone Wasm runtimes are still 
immature and more likely to cause 
performance issues.

4

Performance Issues in Server-side Wasm

A short latency

Client-side apps Server-side apps

Major browsers: Well-developed

Standalone Wasm runtimes: Immature



• Impact of WasmEdge runtime latency on service throughput
• Service: microservice-rust-mysql

5

Impact of Performance Issues: A Real Case

(a) 10,000 request (a) 50,000 request

A 30ms-latency will result in a 20% to 50% drop in service throughput!

https://github.com/second-state/microservice-rust-mysql


• Our goal: Revealing performance issues in standalone Wasm runtimes 

6

Challenges & Solutions 

Challenge: Determine the oracle of performance issues

Solution: Propose an oracle ratio that reflects the systematic 
performance gaps among different Wasm runtimes 

Challenge: Hard to manually analyze each Wasm runtime

Solution: Adopt the idea of differential testing



Performance Data Collection

• Wasm Runtime Performance Differential Testing 

7

Approach: WarpDiff

Abnormal Case Identification Issue Location



• Test case selection
• Well supported by standalone Wasm runtimes 
• More likely to trigger performance issues 

• Wasm code execution
• Compile to Wasm è Execute on different runtimes
• Ensure the correctness of the execution results 

• Performance data recording
• Three running stages

8

Phase 1: Performance Data Collection

Performance Data Collection



• Key insight: The execution time of the same test case on different Wasm runtimes 
should follow a stable ratio (i.e., oracle ratio) in normal cases.

9

Phase 2: Abnormal Case Identification

• How to represent the execution time ratio?
• Vectorization for each test case
• e.g., case x ran for 1s, 2s, 3s on three runtimes è

the vector of x is [1,2,3] è normalization

• How to determine the oracle ratio?
• Take the center of all normalized vectors as the 

estimated oracle ratio

• Calculate the distance between a case vector 
and the estimated oracle ratio 

Abnormal Case Identification



• Goal: Locate the runtime in which the performance issue occurs

10

Phase 3: Performance Issue Location

• Analyze the impact of each runtime on the abnormal case
• For each dimension in the case vector, adjust its value to make 

the case vector closest to the estimated oracle ratio
• Record the adjustment value as deviation degree 

• Treat the runtime with the largest deviation degree as the 
issue-related runtime

Issue Location



11

Research Questions

RQ1: How does WarpDiff perform in identifying performance issues 
in real-world standalone Wasm runtimes?

RQ2: What are the causes of the identified performance issues, and 
how can we verify them?

RQ3: What is the computational overhead of differential testing in 
WarpDiff ?



• Test cases
• 141 C/C++ programs from LLVM test suite
• Valid results on 123 programs

• Wasm runtimes for testing
• Five Wasm runtimes with top popularity and 

activity on GitHub 

12

Experiment Settings



• Top 10 abnormal cases
• Based on the descending order of the deviation degree of the issue-related runtime 

13

RQ1: Identifying Performance Issues

Performance issues are common in existing standalone Wasm runtimes.



• Abnormal stage location è Fine-grained cause location è Cause verification 

14

RQ2: Case Analysis

We summarize 7 performance issues for the 10 abnormal cases. 



• Issue 1: Improper implementation of fd_write (#3784)

• Issue 2: Version issue of the Cranelift code generator (#3821)

15

Case Analysis: Wasmer



• Issue 3: Improper handling when invoking function pointer (#2444)
• Issue 4: Improper handling of virtual function (#2442)

16

Case Analysis: WasmEdge



• Issue 5: Insufficient optimization for division and modulo (#6287)

17

Case Analysis: Wasmtime



• Issue 6: Insufficient optimization for matrix multiplications (#2175)
• Issue 7: Insufficient optimization for complex arithmetic expressions (#2167)

18

Case Analysis: WAMR



• Running time of the differential testing part in WarpDiff
• With different numbers of runtime settings 

19

RQ3: Computational Overhead 

The computational overhead of differential testing only 
accounts for less than 0.01% of the whole process.



20

Conclusion

Significance

Presenter: Shuyao Jiang

Email: syjiang21@cse.cuhk.edu.hk

ArtifactsPre-print

Approach Results

mailto:syjiang21@cse.cuhk.edu.hk

