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• A low-level bytecode format
• Fast, safe, portable
• Support in both browsers and server-side apps
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WebAssembly (Wasm)

Source programs

Wasm bytecode

Client-side

Server-side
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Server-side Wasm Workflow

• Key component: Standalone Wasm runtimes



• The impact of performance issues on 
the server side is usually greater than 
that on the client side.

• Standalone Wasm runtimes are still 
immature and more likely to cause 
performance issues.
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Performance Issues in Server-side Wasm

A short latency

Client-side apps Server-side apps

Major browsers: Well-developed

Standalone Wasm runtimes: Immature



• Impact of WasmEdge runtime latency on service throughput
• Service: microservice-rust-mysql
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Impact of Performance Issues: A Real Case

(a) 10,000 request (a) 50,000 request

A 30ms-latency will result in a 20% to 50% drop in service throughput!

https://github.com/second-state/microservice-rust-mysql


• Our goal: Revealing performance issues in standalone Wasm runtimes 
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Challenges & Solutions 

Challenge: Determine the oracle of performance issues

Solution: Propose an oracle ratio that reflects the systematic 
performance gaps among different Wasm runtimes 

Challenge: Hard to manually analyze each Wasm runtime

Solution: Adopt the idea of differential testing



Performance Data Collection

• Wasm Runtime Performance Differential Testing 
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Approach: WarpDiff

Abnormal Case Identification Issue Location



• Test case selection
• Well supported by standalone Wasm runtimes 
• More likely to trigger performance issues 

• Wasm code execution
• Compile to Wasm è Execute on different runtimes
• Ensure the correctness of the execution results 

• Performance data recording
• Three running stages
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Phase 1: Performance Data Collection

Performance Data Collection



• Key insight: The execution time of the same test case on different Wasm runtimes 
should follow a stable ratio (i.e., oracle ratio) in normal cases.
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Phase 2: Abnormal Case Identification

• How to represent the execution time ratio?
• Vectorization for each test case
• e.g., case x ran for 1s, 2s, 3s on three runtimes è

the vector of x is [1,2,3] è normalization

• How to determine the oracle ratio?
• Take the center of all normalized vectors as the 

estimated oracle ratio

• Calculate the distance between a case vector 
and the estimated oracle ratio 

Abnormal Case Identification



• Goal: Locate the runtime in which the performance issue occurs
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Phase 3: Performance Issue Location

• Analyze the impact of each runtime on the abnormal case
• For each dimension in the case vector, adjust its value to make 

the case vector closest to the estimated oracle ratio
• Record the adjustment value as deviation degree 

• Treat the runtime with the largest deviation degree as the 
issue-related runtime

Issue Location
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Research Questions

RQ1: How does WarpDiff perform in identifying performance issues 
in real-world standalone Wasm runtimes?

RQ2: What are the causes of the identified performance issues, and 
how can we verify them?

RQ3: What is the computational overhead of differential testing in 
WarpDiff ?



• Test cases
• 141 C/C++ programs from LLVM test suite
• Valid results on 123 programs

• Wasm runtimes for testing
• Five Wasm runtimes with top popularity and 

activity on GitHub 
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Experiment Settings



• Top 10 abnormal cases
• Based on the descending order of the deviation degree of the issue-related runtime 
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RQ1: Identifying Performance Issues

Performance issues are common in existing standalone Wasm runtimes.



• Abnormal stage location è Fine-grained cause location è Cause verification 
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RQ2: Case Analysis

We summarize 7 performance issues for the 10 abnormal cases. 



• Issue 1: Improper implementation of fd_write (#3784)

• Issue 2: Version issue of the Cranelift code generator (#3821)
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Case Analysis: Wasmer



• Issue 3: Improper handling when invoking function pointer (#2444)
• Issue 4: Improper handling of virtual function (#2442)
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Case Analysis: WasmEdge



• Issue 5: Insufficient optimization for division and modulo (#6287)
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Case Analysis: Wasmtime



• Issue 6: Insufficient optimization for matrix multiplications (#2175)
• Issue 7: Insufficient optimization for complex arithmetic expressions (#2167)
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Case Analysis: WAMR



• Running time of the differential testing part in WarpDiff
• With different numbers of runtime settings 
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RQ3: Computational Overhead 

The computational overhead of differential testing only 
accounts for less than 0.01% of the whole process.
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