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2» WebAssembly (Wasm)

* A low-level bytecode format
 Fast, safe, portable
» Support in both browsers and server-side apps
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I Server-side Wasm Workflow

« Key component: Standalone \WWasm runtimes
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J» Performance Issues in Server-side Wasm

* The impact of performance issues on « Standalone Wasm runtimes are still
the server side is usually greater than immature and more likely to cause
that on the client side. performance issues.
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I Impact of Performance Issues: A Real Case

« Impact of WasmEdge runtime latency on service throughput
» Service: microservice-rust-mysql

18000 A
16000

=== 500 concurrency
w1000 concurrency
= 2000 concurrency
=== 3000 concurrency

=== 500 concurrency
== 1000 concurrency
=== 2000 concurrency

16000
14000 -

[
F-3
o
o
o

==m=s 3000 concurrency

12000 -

8000 -
6000 -

12000 +

10000 -

8000 -

[
~N

6000 -

Average Throughput (req/s)
Average Throughput (req/s)

== e e— I e
| | | | . | | 4000 - ' ' ' ' ' ' ‘_" '
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Latency (ms) Latency (ms)
(a) 10,000 request (a) 50,000 request

A 30ms-latency will result in a 20% to 50% drop in service throughput!


https://github.com/second-state/microservice-rust-mysql

» Challenges & Solutions

* Our goal: Revealing performance issues in standalone Wasm runtimes

A Challenge: Hard to manually analyze each Wasm runtime

v

Solution: Adopt the idea of differential testing

A Challenge: Determine the oracle of performance issues

v

Solution: Propose an oracle ratio that reflects the systematic
performance gaps among different Wasm runtimes



» Approach: WarpDiff

« Wasm Runtime Performance Differential Testing
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I Phase 1: Performance Data Collection

 Test case selection
« Well supported by standalone Wasm runtimes
* More likely to trigger performance issues

 \Wasm code execution

» Compile to Wasm =» Execute on different runtimes
 Ensure the correctness of the execution results

« Performance data recording

* Three running stages
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I Phase 2: Abnormal Case Identification

Key insight: The execution time of the same test case on different Wasm runtimes

should follow a stable ratio (i.e., oracle ratio) in normal cases.

How to represent the execution time ratio?

* Vectorization for each test case

* e.g., case x ran for 1s, 2s, 3s on three runtimes =
the vector of x is [1,2,3] = normalization

How to determine the oracle ratio?

* Take the center of all normalized vectors as the
estimated oracle ratio

Calculate the distance between a case vector
and the estimated oracle ratio
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I Phase 3: Performance Issue Location

» Goal: Locate the runtime in which the performance issue occurs

« For each dimension in the case vector, adjust its value to make
the case vector closest to the estimated oracle ratio

» Record the adjustment value as deviation degree

» Analyze the impact of each runtime on the abnormal case E S i%
o \i/,
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I» Research Questions

RQ1: How does WarpDiff perform in identifying performance issues
in real-world standalone Wasm runtimes?

RQ2: What are the causes of the identified performance issues, and
how can we verify them?

RQ3: What is the computational overnead of differential testing in
WarpDiff ?
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2» Experiment Settings

 Test cases « Wasm runtimes for testing
* 141 C/C++ programs from LLVM test suite * Five Wasm runtimes with top popularity and
» Valid results on 123 programs activity on GitHub
TABLE I TABLE II

INFORMATION OF OUR TEST CASES FROM THE LLVM TEST SUITE. INFORMATION OF WASM RUNTIMES FOR TESTING.
Benchmark #Program  #LOC’| Benchmark  #Program  #LOC Runtime #GitHub Stars” Test Version Execution Mode
Adobe-C-++ 6 1,615 | Misc-C++ 7 1,322
BenchmarkGame 8 486 | Misc-C++EH 1 16,817 Wasmer 15.1k 3.2.0 AOT
CoyoteBench 4 1,471 | Polybench 30 4,364 Wasmtime 12.1k cli 8.0.0 AOT
Dhrystone 2 642 | Shootout 14 573 Wasm3 6k v0.5.0 Interpreter
Linpa}ck 1 693 Shootout-C++ 25 783 WasmEdge 5.9k 0.12.0 AOT
McGill 4 956 | SmallPT 1 96 WAMR 3.7k 1.1.2 Interpreter/AOT
Misc 27 5,052 | Stanford 11 1,135

| Total 141 36,005 * Statistics of Github stars is by April 2023.

* LOC: lines of code.
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2» RQ1: Identifying Performance Issues

« Top 10 abnormal cases

« Based on the descending order of the deviation degree of the issue-related runtime

TABLE III
Deviation degree OF EACH RUNTIME SETTING ON THE TOP 10 ABNORMAL CASES.

Case Wasmer Wasmtime Wasm3 Wasm3_compile WasmEdge WAMR WAMR_AOT
BenchmarkGame/fasta.c 0.702 0.113 -0.248 -0.244 0.082 -0.270 0.081
Shootout/methcall.c -0.051 -0.028 -0.164 -0.164 0.502 0.044 -0.014
Shootout—-C++/methcall.cpp -0.036 -0.031 -0.126 -0.128 0.415 0.072 -0.009
Shootout/random.c 0.075 0.315 -0.060 -0.060 0.079 -0.026 0.101
Shootout-C++/random. cpp 0.096 0.309 -0.063 -0.063 0.098 -0.036 0.121
Polybench/2mm.c -0.038 -0.039 -0.151 -0.149 -0.035 0.268 0.003
Polybench/gemm.c -0.038 -0.041 -0.145 -0.153 -0.036 0.267 0.007
Polybench/3mm.c -0.037 -0.040 -0.145 -0.140 -0.034 0.261 0.005
Misc/flops-8.c -0.019 0.012 -0.142 -0.142 -0.009 0.251 0.015
Misc/flops-4.c 0.234 -0.003 -0.127 -0.127 -0.019 0.168 0.001

Performance issues are common in existing standalone Wasm runtimes.
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» RQ2: Case Analysis

« Abnormal stage location = Fine-grained cause location = Cause verification

TABLE IV
SUMMARY OF PERFORMANCE ISSUES RELATED TO THE 10 ABNORMAL CASES.

Case Related Runtime Issue ID Cause of Performance Issue Status
BenchmarkGame/fasta.c Wasmer #3784 Improper implementation of fd_write Confirmed
Misc/flops-4.c Wasmer #3821 Version issue of the Cranelift code generator Confirmed
Shootout/methcall.c WasmEdge #2444 Improper handling when invoking function pointer Confirmed
Shootout-C++/methcall.cpp WasmEdge #2442 Improper handling of virtual function Confirmed
Shootout/random.c Wasmtime . T -

Shootout—C++/random. cpp Wasmtime #6287 Insufficient optimization for division and modulo Confirmed
Polybench/2mm.c WAMR

Polybench/gemm.c WAMR #2175 Insufficient optimization for matrix multiplications Confirmed
Polybench/3mm.c WAMR

Misc/flops-8.c WAMR #2167  Insufficient optimization for complex arithmetic expressions  Confirmed

We summarize 7 performance issues for the 10 abnormal cases.
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Performance Issue in the fd_write Implementation #3784

hungryzzz opened this issue on Apr 19 - 7 comments

2» Case Analy

* Issue 1: Improper in

hungryzzz commented on Apr 19 «

Summary

Hi, I run the following case in differ
differences between wasmer and ¢
execute the wasm code( inner_moc
than which in wasmtime .

* wasmer: 136486.78 us

* wasmtime: 30420.03 us

* wasmedge(AOT): 23816.45 us
wamr(AOT): 20412.60 us

Performance Issue related to Cranelift #3821
hungryzzz opened this issue on Apr 25 - 3 comments

n

hungryzzz commented on Apr 25

Summary

Hi, I run the attached case in different Wasm runtimes(after being compiled by Emscripten ), and I also find some
performance differences between wasmer and other 3 runtimes: the execution time(collected by perf-tool, probe begins

Assignees

& ptitseb

Labels

. . when starting to execute the wasm code( inner_module_run in wasmer ) and end in sched:sched_process_exit ) in wasmer
#include <stdio.h>
s tatlc VOld repea t_fa S t a ( Char #include <sys/time.h> is 3.5x slower than which in wasmtime .
4 . Projects
Sl1zZ e_t pO S = O ’ X::::{ i:ru(t timeval timeva « wasmer: 2271270.05 us ije vet
size t len = strlen (s); ' « wasmtime: 610519.54 us
o static void repeat(int count) .
char *s2 = malloc (len + WI int ten = 50; + Wasmedge (ROT): 430803.42 us Milestone
do { * wamr (AOT): 418358.5 us -
gettimeofday(&tv, NULL);
memcpy (s2, s, len); T va.x

memcpy (s2 + len, s,
do {
size t line = MIN(WIDTH,
fwrite (s2 + pos,1,line,
putchar ('\n');
pos += line;
if (pos >= len) pos -= 1

WIDTH)

printf("sd\n", tv.tv_usec
} while (count >= 0);
i)

int main() {

repeat (500000) ;
return 0;

Hardware & 0S

* Ubuntu 20.04

Hardware & OS

* Ubuntu 20.04
* CPU: Intel(R) Core(TM) i5-9500T CPU @ 2.20GHz
* Memory: 32GB

Emscripten

* emcc (Emscripten gcc/clang-like replacement + linker emulating GNU Id) 3.1.24
0429e0bcfb6 792554350a5)
clang version 16.0.0 (https://github.com/llvm/llvm-project 277¢382760bf9575cfa2eac73d5ad1db91466d3f)
Target: wasm32-unknown-emscripten

Development

No branches or pull requests

Notifications Customize
L) Subscribe

You're not receiving notifications from this thread

4 participants

count = Line; e e
} while ( count ) H Emscripten Wasm runtime version
free (s2);

(a) Issue-related code snipf

e |ssue 2: Version issl

* emcc (Emscripten gcc/clang-li
(68a9f990429e0bcfb63blcde
clang version 16.0.0 (https://gi
Target: wasm32-unknown-em:
Thread model: posix

Wasm runtime version

* wasmer: wasmer 3.2.0-alpha.l
* wasmtime: wasmtime-cli 8.0.0
* wasmedge: build from commit
* wamr:iwasm 1.1.2

Additional details

I find that if | comment the 10(print
replace the fd_write function to:

* wasmer: wasmer 3.2.0
* wasmtime: wasmtime-cli 8.0.0

* wasmedage: build from commit 381b7b28049b968297e6a585b92d1cba955def66
* wamr: iwasm 1.1.2

Additional details
1find that both wasmer and wasmtime use the cranelift as default compiler. | guess maybe it's related to the different
version of cranelift. And then | try to use LLVM as the compiler ( wasmer run --llvm ), | get the execution time

423130.01us , which show more relation to the current cranelift in wasmer.
So is it convenient to upgrade the version of current cranelift? Or how can | do it?

flops-4.txt

(©)

©  ® hungryzzz added the ' ? question | label on Apr 25

=3 ‘ ptitSeb added this to the v4.0 milestone on Apr 25

3 ‘ ptitSeb self-assigned this on Apr 25

value
F the

of count
value of count

) with parameter 500000

ce Issue #3784.
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3 Case Analysis: WasmEdge

* Issue 3: Improper handling when invoking function pointer (#2444)
* Issue 4: Improper handling of virtual function (#2442)

#include <stdio.h>
#include <stdlib.h>

typedef struct Toggle { // define a structure of Toggle
char state;
void (*activate) (struct Toggle);

} Toggle;

void toggle activate(Toggle this) { // activate the toggle
this.state = !this.state;

}

int main() {
int i, n = 1000000;
Toggle tog;
tog.state = 1;
tog.activate = toggle activate;

for (i=0; i<n; i++) {
tog.activate(tog); // invoke the function by pointer
// toggle activate(tog); // invoke the function directly
}
puts (tog.state ? "true\n" : "false\n");
return 0;

Fig. 5. Simplified methcall.c related to Issue #2444 of WasmEdge.



3 Case Analysis: Wasmtime

* Issue 5: Insufficient optimization for division and modulo (#6287)

inline double gen random(double max) { // generate a random number
static long last = 42;

last = (last * IA + IC) % IM; // compound operations of *, + and %
return( max * last / IM ); // compound operations of * and /

}

(a) Issue-related code snippet of random. c.

#include <stdio.h>

int main() {
int N = 10000000, last = 42;
while (N--) {
last = (last + 33) % 13; // compound operations of + and %
}
printf ("%d\n", last);
return (0) ;

(b) A new test case that can reproduce Issue #6287.



3 Case Analysis: WAMR

* |ssue 6: Insufficient optimization for matrix multiplications (#2175)
* Issue 7: Insufficient optimization for complex arithmetic expressions (#2167)

fpragma ScCoOf
/* D := alpha*A*B*C + beta*D */
for (i = 0; i < _PB_NI; i++)
for (j = 0; j < _PB NJ; j++)
{
tmp (i) [j] = 0;
for (k = 0; k < _PB_NK; ++k)

tmp[i] [j] += alpha * A[i][k] * B([k][j];

; 1 < _PB_NI; i++)
0; jJ < _PB_NL; j++)

D[i] [§] *= beta;
for (k = 0; k < PB NJ; ++k)

D[i] [j] += tmp[i] [k] * C[k][3]:

fpragma enascop

// alpha*A*B

// beta*D

// alpha*A*B*C + beta*D

Fig. 7. Issue-related code snippet of 2mm. c in Issue #2175 of WAMR.

/*‘k********‘k**********/

x = piref / ( three * (double)m );
s = 0.0; /* Loop 9. &
vV = 0.0; /*********************/
for(i=1; i<=m-1; i++ )
{

u = (double)i * x;

w=1u * u;

v = W*¥ (w* (w* (w* (w* (B6*w+B5) +B4) +B3) +B2) +B1) +one;

s = s + v¥v*u* ((((((A6*w+A5) *w+A4) *w+A3) *w+A2) *w+Al) *w+one) ;

Fig. 8. Issue-related code snippet of f1ops-8. c in Issue #2167 of WAMR.
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» RQ3: Computational Overhead

* Running time of the differential testing part in WarpDiff

» With different numbers of runtime settings

TABLE V
COMPUTATIONAL OVERHEAD OF DIFFERENTIAL TESTING UNDER
DIFFERENT NUMBERS OF RUNTIME SETTINGS.

#Runtime |2 3 4 5 6 7
Avg. Overhead (s) | 0.330 0.476 0.604 0.735 0.845 0.966
Std. Deviation 0.026 0.039 0.047 0058 0044 0.037

The computational overhead of differential testing only
accounts for less than 0.01% of the whole process.



J» Conclusion

I Performance Issues in Server-side Wasm

» The impact of performance issues on
the server side is usually greater than
that on the client side.
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3 Approach: WarpDiff

* Wasm Runtime Performance Differential Testing
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3 RQ2: Case Analysis

* Abnormal stage location = Fine-grained cause location = Cause verification

TABLE IV
SUMMARY OF PERFORMANCE ISSUES RELATED TO THE 10 ABNORMAL CASES.

Case Related Runtime  Issue ID Cause of Performance Issue Status

BenchmarkGame/fasta.c Wasmer #3784 Improper implementation of £d_write Confirmed

Misc/flops—4.c Wasmer #3821 Version issue of the Cranelift code generator Confirmed

Shootout /metheall.c WasmEdge #2444 Improper handling when invoking function pointer Confirmed

Shootout-C++/methcall.cpp WasmEdge #2442 Tmproper handling of virtual function Confirmed

Shootout /random.c ‘Wasmtime - i B .

Shookout-C it /zandon. cpp ki o #6287 Insufficient optimization for division and modulo Confirmed

Polybench/2mn.c WAMR

Polybench/gemm.c WAMR #2175 Insufficient optimization for matrix multiplications Confirmed

Polybench/3mm.c WAMR

Misc/Elops—8.c WAMR #2167 Tnsufficient optimization for complex arithmetic expressions _ Confirmed

We summarize 7 performance issues for the 10 abnormal cases.
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