The 32" |EEE International Conference on Software Analysis, Evolution and Reengineering (SANER 2025)

Distinguishability-guided Test Program Generation
for WebAssembly Runtime Performance Testing

Shuyao Jiang', Ruiying Zeng?, Yangfan Zhou?, Michael R. Lyu’
1. Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China

2. School of Computer Science, Fudan University, Shanghai, China

Q ARISE

AtmthIbIItIIg nt
Software Engine

ONID:
R efeh 11 2 4 £ £
(_ The Chinese Umver51ty of Hong Kong R 2552 y ITY

FUDAN UN

» WebAssembly (Wasm)

« A binary instruction format
» Designed as a compilation target for programming languages
» Fast, safe, portable, lightweight

« Key component: \Wasm runtime
« Translate Wasm binary instructions to native machine code

————————————————————

| 1 I
| ii‘ Wasmer i Q i =- !
. o em— : | P :
Compiler AL WAS] ! |
< /> — > .‘ﬁ' WasmEdge ! > :
| 1 I

e | ;
Wasmtime | ! & i
SourceCode @ WasmCode ~~—~~—=—=—=—==—=—=---- ! e - I

Wasm Runtime 0S

3 Performance Testing for Wasm Runtime

« Performance issues in Wasm runtimes
« Abnormal latency caused by runtime design flaws

* Impact of performance issues on Wasm service throughput U]
» A 30ms-latency will result in up to 50% drop in service throughput

18000 |

16000 1 === 500 concurrency
1000 concurrency

s 2000 concurrency

=== 3000 concurrency

== 500 concurrency
1000 concurrency

= 2000 concurrency

=== 3000 concurrency

16000

14000
14000 A

12000 12000

10000 10000+

8000 - \

8000 -

6000 N

| —

B e

Average Throughput (req/s)
Average Throughput (req/s)

(=2}
o
o
o

B
o
o
o

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Latency (ms) Latency (ms)
(a) 10,000 request (b) 50,000 request

[1] “Revealing Performance Issues in Server-side WebAssembly Runtimes via Differential Testing.” Shuyao Jiang, Ruiying Zeng, Zihao Rao, Jiazhen Gu, Yangfan Zhou, and Michael R. Lyu.
In Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023).

2 Existing Work: WarpDiff]

A differential testing framework for identifying Wasm runtime performance issues

» Key idea: The execution time of the same test case on different Wasm runtimes should follow a
stable ratio (i.e., oracle ratio)

% —> 2;)1001 ‘%

Testcasel Wasm code 1 Runtime 1

Oracle ratio

=

Performance data
of test case 1

i I |
I 1 | 1
I | | |
1 I I : |
[1 I : 1
I [I : — [
(= . I I — I : I
= : | E Z| I v Abnormal case 1 I Performance
—> (101001 : : = . issue 1
I Performance data I I
Testcase 2 Wasm code 2 : Runtime 2 | of testcase2 | r':g I)
'R 1 N | mEw 1 C++ | *,’
= 0 I I 3 | Search space [
f_g r 1 ! E\— ! Ab I 2! Performance
=) 101001 : : . I normal case : . .
issue
I 1 Performance data | 1
Testcasen Wasm code n I Runtimem 1 oftestcasen | s |
————— 4 | 1

 Limitation of WarpDiff. Insufficient high-quality test programs

* Only use a small benchmark for testing

[1] “Revealing Performance Issues in Server-side WebAssembly Runtimes via Differential Testing.” Shuyao Jiang, Ruiying Zeng, Zihao Rao, Jiazhen Gu, Yangfan Zhou, and Michael R. Lyu.
In Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023).

» Goal & Challenges

* Our goal: Generate high-quality test programs for further testing
« What are high-quality test programs?
-- Tend to trigger performance issues in \Wasm runtimes

A Challenge 1: Lack of sufficient prior knowledge about Wasm
runtime performance

A Challenge 2: Difficult to verify the quality of generated test
programs

2» Approach Design Insights

“ Insight 1: Historical issue-triggering test programs contain information that

helps detect new issues.

Practice: Extract code snippets from historical abnormal cases, then insert
them in different contexts to generate new test programs.

v

v Insight 2: The test oracle proposed by WarpDiff can inspire test program
- quality verification.

Practice: Propose an indicator distinguishability to guide test program
generation process.

» Approach: WarpGen

* Adistinguishability-guided test program generation approach for Wasm runtime
performance testing

M penalty +1 !

11
N () (@] A T .
| — 1 ﬁl Wasmer TNO

t 9«

I
Program Synthesis I Program Quality Verification

e o s o o o e En EEn M B S EEn EEm EEn EEn B B B B EEn EEm SEm EEm EEm S B B B e e e o s o o o e En EEn M B S EEn EEm EEn EEn B B B B EEn EEm SEm EEm EEm S B B B e e

1

| |
| |
| |
I | : I
| : 1 |
1 <> <> 11 I ! |
1 Seed 11 / 1 : — |
[Programs Seed Pool I 011 ! - | T [
1 ced roo —> 2_9 —» 8(]5?1 —p WasmEdge : — “R —>» >TopN? |
| | | ! = O 1 S — |
I — I — ! | = I
| X WA - I Distinguishability |
I 1= New Program || Wasm Code : = Wasmtime : (dist score) I
| v —> —p —_ 11 I cee 1 |
| v N I : |
I S Emmmmm e == ! Yes I
I Distinguishable ' : I Wasm Runtimes |
| |
I Programs Operator Pool : I
| |
| |
| |
| |

2» Program Validity

A critical challenge in program synthesis
« Ensure the validity of the synthesized program

Syntax Validity: The synthesized program should conform to the
syntax rules and be able to pass compilation.

Insertion Validity: The inserted operator should affect the behavior
of the seed program.

2 Data Preprocessing: Operator Extraction

« Sequential Operator
* A code block containing sequential statements without branches and loops.

« Branching Operator

» A code block containing conditional branching statements (i.e., if, else,and else if),
including conditions and corresponding code to be executed.

» Looping Operator
» A code block containing looping statements (i.e., for, while, and do-while), including loop
conditions and loop bodies. It may contain nested loops.

* Mixed Operator
* A code block containing a combination of
the above three operators.

] . Distinguishable
Implementation: Clang tool based on LLVM Project Programs Operator Pool

\(I“

2 Data Preprocessing: Operator Extraction

« Context recording: Pre-context & Post-context

Pre-context Syntax Validity
All used variables (excluding Example
variables declared and assigned in
this block) and called functions { (1=1;1<=m1; i)
(excluding standard library functions) = (double)i x*
e 0% us
in this block. = s + wk(wk(wk(wk(wk(B6xw+B5)+B4)+B3)+B2)+B1)+
Iy
. - Pre-context: Post-context:
Post-context Insertion Validity {me, ;,OB;, BS, B4, B3, B2, B, one} {i(,)i, f; s}e

All variables assigned in this block

(excluding variables declared in this
block).

10

2 Data Preprocessing: Seed Profiling

 Profiling information: Variable Usage & Code Coverage

Variable Usage Syntax Validity

All the declared variables in the seed program
» Position of first declared

. L LN AN
Position of last used D | e
‘ <> —»
N N
Seed i il
_ o Programs
Code Coverage Insertion Validity Sced Pool

Covered code lines during seed program
execution

11

2» Program Synthesis

« Given an operator and a seed, synthesize a program by two steps

« Step 1: Insertion point selection

» Traverse the code lines recorded in the code coverage of the seed

» Collect the current context (local/global variables) of the seed

» Read the pre/post contexts of the operator to check whether this line is a valid insertion point
 Randomly select a valid insertion point

. . D (D
« Step 2: Variable dependency handling <_/5 |l e
* Replace the variable in the operator with o) [
another same-type variable in the seed s Seed Pool , E_ﬁ
« Define a new variable _ —
2_ - New Progr

—~O—

Operator Pool

Distinguishable
Programs

12

2 lteration Process: Program Quality Indicator

* Distinguishability (dist score)

The distinguishability (dist score) of a test program is the Euclidean distance between the
normalized vector of its execution time ratio (on Wasm runtimes to be tested) and the

normalized vector of the oracle ratio.

« Example
« X=[1,2,3]
* Oracle ratio: O =[0.2,0.2,0.4]
« dist score(X) = EuDist(X,0) = 0.12

Normalize

[0.17,0.33,0.5]

penalty +1
N e !
</> ‘ INEEE . 1 i . @ !
. — —> | 1 ' ' I
N N 1 ! 1 1
= W e P |
P esams Seed Pool :: 101 — i :
Wasndge | —» (60D —p e |
g1 = oot ! ’ = p
1 —
WA ! Dist habil;
New Program || Wasm Code Wasmtim ")ty
to— —@® ! --
O® D i
Lable ' :I ‘Wasm Runtim
PPPPPPPP Operator Pool I:
f 1
| 391+
Program Synth !

Goal of iteration: Identify top N distinguishable programs (i.e., programs with top N dist score).

13

I Iteration Process: Initial Iteration

* Initial operators: Extracted from abnormal cases reported by WarpDiff

* For each initial operator
 Insert it into a random seed --> new program
* Run the new program on several Wasm runtimes to calculate the dist score

 Collect the programs with top N dist score as distinguishable programs

 Extract operators from the distinguishable programs
» Add the new operators to the operator pool

14

3 lteration Process: Follow-up lterations

» Goal: Find new test programs with higher dist score than the previous top N

« To improve the efficiency of iteration: Penalty mechanism
» Assign a penalty (initial value = 0) for each operator

* Each time
 Randomly select an operator and a seed --> new program

» Calculate the dist score of the new program
* If dist score > previous top N: Mark as a new distinguishable program
» Else: penalty (of the selected operator) +1

* An operator with penalty > M will be removed

15

I lteration Process: The Whole Process

Algorithm 1: Iteration Process of WarpGen

Input :seedPool, opPool, N, M, k
Output:top N distinguishable programs

// Initial Iteration
1 foreach operator op in opPool do

2 seed < a random seed in seedPool,;
3 synProgram < SynthesizeProgram(op, seed);
4 distScore < GetDistScore(synProgram); . Y penalty <1

______________ .
i‘i] Wasmer TNO

! 1
| :
! 1
! 1
1 | —

Programs Seed Pool 1 11 ' = 1 T

eed Poo > 2_9 _t_:_; g%gl —>i WasmEdge i—bg—b >TopN?

| i
! 1
i :

]
1
I
I
I
1
1
1
I
I
I
: A WA
1
I
I
I
1
1
1
I
I
I
|

5 topScoreSet « top N distScore values;

6 topProgramSet < programs with top N distScore values;
7 foreach program p in topProgramSet do

8 L opPool < opPool U ExtractOps(p);

i —>

A
=
[/ Al 74
'@
A
=
Al 74

<

<[> I
Seed I 1

4

N . Distinguishability
9 foreach operator op in opPool do penaltyop < 0 ; _’ . _ NewProgram | Wasm Code == Wasmtime (dist score)
// Follow-up Iterations S ! Yes
. Distinguishable ' h Wasm Runtimes

10 while the number of generated programs < k do Programs Operator Pool g
11 op, seed «— a random value in opPool, seedPool; t D -

. 51T
12 SynProgram < SynthesizeP r'Ogr‘am(Op, seed); Program Synthesis M Program Quality Verification)
13 distScore « GetDistScore(synProgram); T T TTTTTTTmmTmmTmmmTmTITTT mmm e
14 if distScore > Min(topScoreSet) then
15 opPool < opPool U ExtractOps(synProgram);
16 Update(topScoreSet, topProgramSet);
17 penaltyop « 0;
18 else penalty,p «— penaltyop + 1;
19 if penalty,p == M then opPool < opPool \ {op};

I Research Questions

RQ1: How efficient is WarpGen to generate high-quality test programs?

RQ2: How effective is the distinguishability-guided design in WarpGen?

RQ3: Can WarpGen detect new performance issues in Wasm runtimes?

17

2» Experiment Settings

TABLE I
WASM RUNTIMES AS TEST OBJECTS.

¢ Wasm ru ntlmeS fOr teStlng Runtime Language #Stars #Commits Version
» Wasmer, Wasmtime, WasmEdge, WAMR Wasmime Rut 135k 125 i 1500
WasmEdge C/C++ 7.2k 2.9k 0.13.5
° Inltlal Operators WAMR C/C++ 4.2k 1.5k 1.2.3

» 271 operators from 20 abnormal cases reported by WarpDiff

« Seed programs
* 100 random C programs generated by Csmith

« Parameters

* Oracle ratio. Based on the average execution time on the seed programs
e« N=20,M=5

« Compared Approaches
« Csmith: Random approach
» WarpGen-base: Do NOT update the operator pool and the top program set

18

I RQ1: Efficiency of WarpGen

» Top 20 dist score for each generated test program during the iteration process
* Minimal: The threshold for updating distinguishable programs
» Average: the average quality of distinguishable programs

TABLE 11
STATISTICS OF TOP 20 dist score WHEN WarpGen GENERATED DIFFERENT NUMBERS OF TEST PROGRAMS.

#Programs 20 50 80 110 140 170 200 230 260 290 320 350 380 410 436
Minimal 0.023 0.149 0208 0.259| 0.454 10454 0454 0454 0454 0454 0454 0458 0459 0459 0459
Average 0.145 0.226 0266 0.392| 0.462 0462 0462 0462 0462 0462 0462 0479 0481 0481 0.481

WarpGen can generate high-quality test programs with high efficiency.

19

I RQ2: Effectiveness of Guidance

« Comparison of top 20 dist score from different approaches
» Csmith: Random approach
» WarpGen-base: Do NOT update the operator pool and the top program set

0.5

e
>

o
W

WarpGen
WarpGen-base
0.2 —+— Csmith

| W 01, W““’“’“’“

WarpGen
WarpGen-base
4= Csmith

dist score
dist score

e
N

e
[

e
o

o

100 200 300 400 0 100 200 300 400
Number of Programs Number of Programs
(a) Minimal of top 20 (b) Average of top 20

WarpGen can generate test programs of higher quality and
more quickly than the baseline approaches.

20

» RQ3: New Performance Issues

* |dentify issues from the final top 20 distinguishable programs

TABLE III
PERFORMANCE ISSUES IDENTIFIED BY WarpGen.

ID Runtime Scenario Status
#7731 Wasmtime Floating-point (FP) arithmetic Fixed
#7732 Wasmtime Access of pointers to constant Confirmed
#7733 ~ Wasmtime Increment operation in nested loops Confirmed
#4378 Wasmer Operations on FP arrays Fixed
#4379 Wasmer Call of standard output functions Fixed
#4380 Wasmer Access of variable addresses Fixed
#2938 WAMR FP arithmetic Confirmed

WarpGen is effective to detect new performance issues in Wasm runtimes.

21

J» Conclusion

A 3 Approach: WarpGen 9 2 RQ3: New Performance Issues

Aoy e

3 Approach Design Insights

* Adistinguishability-guided test program generation approach for Wasm runtime « Identify issues from the final top 20 distinguishable programs

Insight 1: Historical issue-triggering test programs contain information that performance testing

helps detect new issues. i e i

! penaliy +1 | PERFORMANCE ISSUES IDENTIFIED BY WarpGen
Practice: Extract code snippets from historical abnormal cases, then insert : Sor— — (@) ﬁ ---------- ' 1 D Runtime Scenario Status
2 ! N ; |
them in different contexts to generate new test programs. i — Q! Wasmer | TN» ; #1731 Wasmiime Floating-point (FP) arithmetic Fixed
] Programs H = | #7732 Wasmtime Access of pointers to constant Confirmed
' SeedBacl Vasnétge | —» |80 —p TN 1 #7733 Wasmtime Increment operation in nested loops ~ Confirmed
| Wasmti | Distngustabiy i #4378 Wasmer Operations on FP arrays Fixed
. . . n ! - = fasmtime | list score) ! #4379 Wasi Call of standard funct Fixed
“ Insight 2: The test oracle proposed by WarpDiff can inspire test program ; —> —® ‘ N B et ; o e e o L
quality verification. i et ™ #9338 WAMR FP arithmetic Confirmed
i Programs Operator Pool .
Practice: Propose an indicator distinguishability to guide test program i
generation process. . B ProgamSydiealsl] 00— : WarpGen is effective to detect new performance issues in Wasm runtimes.
6 2

Insights Approach Evaluation

Presenter: Shuyao Jiang

Affiliation: The Chinese University of Hong Kong

Email: syjiang21@cse.cuhk.edu.hk

Pre-print Homepage

22

mailto:syjiang21@cse.cuhk.edu.hk

