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» WebAssembly (Wasm)

« A binary instruction format
» Designed as a compilation target for programming languages
» Fast, safe, portable, lightweight

« Key component: \Wasm runtime
« Translate Wasm binary instructions to native machine code
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3 Performance Testing for Wasm Runtime

« Performance issues in Wasm runtimes
« Abnormal latency caused by runtime design flaws

* Impact of performance issues on Wasm service throughput U]
» A 30ms-latency will result in up to 50% drop in service throughput
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2 Existing Work: WarpDiff ]

A differential testing framework for identifying Wasm runtime performance issues

» Key idea: The execution time of the same test case on different Wasm runtimes should follow a
stable ratio (i.e., oracle ratio)
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 Limitation of WarpDiff. Insufficient high-quality test programs

* Only use a small benchmark for testing

[1] “Revealing Performance Issues in Server-side WebAssembly Runtimes via Differential Testing.” Shuyao Jiang, Ruiying Zeng, Zihao Rao, Jiazhen Gu, Yangfan Zhou, and Michael R. Lyu.
In Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023).




» Goal & Challenges

* Our goal: Generate high-quality test programs for further testing
« What are high-quality test programs?
-- Tend to trigger performance issues in \Wasm runtimes

A Challenge 1: Lack of sufficient prior knowledge about Wasm
runtime performance

A Challenge 2: Difficult to verify the quality of generated test
programs



2» Approach Design Insights

“ Insight 1: Historical issue-triggering test programs contain information that

helps detect new issues.

Practice: Extract code snippets from historical abnormal cases, then insert
them in different contexts to generate new test programs.

v

v Insight 2: The test oracle proposed by WarpDiff can inspire test program
- quality verification.

Practice: Propose an indicator distinguishability to guide test program
generation process.



» Approach: WarpGen

* Adistinguishability-guided test program generation approach for Wasm runtime
performance testing
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2» Program Validity

A critical challenge in program synthesis
« Ensure the validity of the synthesized program

Syntax Validity: The synthesized program should conform to the
syntax rules and be able to pass compilation.

Insertion Validity: The inserted operator should affect the behavior
of the seed program.




2 Data Preprocessing: Operator Extraction

« Sequential Operator
* A code block containing sequential statements without branches and loops.

« Branching Operator

» A code block containing conditional branching statements (i.e., if, else,and else if),
including conditions and corresponding code to be executed.

» Looping Operator
» A code block containing looping statements (i.e., for, while, and do-while), including loop
conditions and loop bodies. It may contain nested loops.

* Mixed Operator
* A code block containing a combination of
the above three operators.

] . Distinguishable
Implementation: Clang tool based on LLVM Project Programs Operator Pool
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2 Data Preprocessing: Operator Extraction

« Context recording: Pre-context & Post-context

Pre-context Syntax Validity
All used variables (excluding Example
variables declared and assigned in
this block) and called functions { (1=1;1<=m1; i)
(excluding standard library functions) = (double)i x*
e 0% us
in this block. = s + wk(wk(wk(wk(wk(B6xw+B5)+B4)+B3)+B2)+B1)+
Iy
. - Pre-context: Post-context:
Post-context Insertion Validity {me, ;,OB;, BS, B4, B3, B2, B, one} {i(,)i, f; s}e

All variables assigned in this block

(excluding variables declared in this
block).
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2 Data Preprocessing: Seed Profiling

 Profiling information: Variable Usage & Code Coverage

Variable Usage Syntax Validity

All the declared variables in the seed program
» Position of first declared

. L LN AN
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‘ <> —»
N N
Seed i il
_ o Programs
Code Coverage Insertion Validity Sced Pool

Covered code lines during seed program
execution
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2» Program Synthesis

« Given an operator and a seed, synthesize a program by two steps

« Step 1: Insertion point selection

» Traverse the code lines recorded in the code coverage of the seed

» Collect the current context (local/global variables) of the seed

» Read the pre/post contexts of the operator to check whether this line is a valid insertion point
 Randomly select a valid insertion point

. . D (D
« Step 2: Variable dependency handling <_/5 |l e
* Replace the variable in the operator with o ) [
another same-type variable in the seed s Seed Pool , E_ﬁ
« Define a new variable _ —
2_ - New Progr
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Operator Pool

Distinguishable
Programs
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2 lteration Process: Program Quality Indicator

* Distinguishability (dist score)

The distinguishability (dist score) of a test program is the Euclidean distance between the
normalized vector of its execution time ratio (on Wasm runtimes to be tested) and the

normalized vector of the oracle ratio.

« Example
« X=[1,2,3]
* Oracle ratio: O =[0.2,0.2,0.4]
« dist score(X) = EuDist(X,0) = 0.12

Normalize

[0.17,0.33,0.5]
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Goal of iteration: Identify top N distinguishable programs (i.e., programs with top N dist score).
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I Iteration Process: Initial Iteration

* Initial operators: Extracted from abnormal cases reported by WarpDiff

* For each initial operator
 Insert it into a random seed --> new program
* Run the new program on several Wasm runtimes to calculate the dist score

 Collect the programs with top N dist score as distinguishable programs

 Extract operators from the distinguishable programs
» Add the new operators to the operator pool
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3 lteration Process: Follow-up lterations

» Goal: Find new test programs with higher dist score than the previous top N

« To improve the efficiency of iteration: Penalty mechanism
» Assign a penalty (initial value = 0) for each operator

* Each time
 Randomly select an operator and a seed --> new program

» Calculate the dist score of the new program
* If dist score > previous top N: Mark as a new distinguishable program
» Else: penalty (of the selected operator) +1

* An operator with penalty > M will be removed
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I lteration Process: The Whole Process

Algorithm 1: Iteration Process of WarpGen

Input :seedPool, opPool, N, M, k
Output:top N distinguishable programs

// Initial Iteration
1 foreach operator op in opPool do

2 seed < a random seed in seedPool,;
3 synProgram < SynthesizeProgram(op, seed);
4 distScore < GetDistScore(synProgram); . Y penalty <1
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5 topScoreSet « top N distScore values;

6 topProgramSet < programs with top N distScore values;
7 foreach program p in topProgramSet do

8 L opPool < opPool U ExtractOps(p);
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9 foreach operator op in opPool do penaltyop < 0 ; _’ . _ NewProgram | Wasm Code == Wasmtime (dist score)
// Follow-up Iterations S ! Yes
. Distinguishable ' h Wasm Runtimes

10 while the number of generated programs < k do Programs Operator Pool g
11 op, seed «— a random value in opPool, seedPool; t D -

. 51T
12 SynProgram < SynthesizeP r'Ogr‘am(Op, seed); Program Synthesis M Program Quality Verification )
13 distScore « GetDistScore(synProgram); T T TTTTTTTmmTmmTmmmTmTITTT mmm e
14 if distScore > Min(topScoreSet) then
15 opPool < opPool U ExtractOps(synProgram);
16 Update(topScoreSet, topProgramSet);
17 penaltyop « 0;
18 else penalty,p «— penaltyop + 1;
19 if penalty,p == M then opPool < opPool \ {op};




I Research Questions

RQ1: How efficient is WarpGen to generate high-quality test programs?

RQ2: How effective is the distinguishability-guided design in WarpGen?

RQ3: Can WarpGen detect new performance issues in Wasm runtimes?
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2» Experiment Settings

TABLE I
WASM RUNTIMES AS TEST OBJECTS.

¢ Wasm ru ntlmeS fOr teStlng Runtime Language #Stars #Commits Version
» Wasmer, Wasmtime, WasmEdge, WAMR Wasmime  Rut 135k 125 i 1500
WasmEdge C/C++ 7.2k 2.9k 0.13.5
° Inltlal Operators WAMR C/C++ 4.2k 1.5k 1.2.3

» 271 operators from 20 abnormal cases reported by WarpDiff

« Seed programs
* 100 random C programs generated by Csmith

« Parameters

* Oracle ratio. Based on the average execution time on the seed programs
e« N=20,M=5

« Compared Approaches
« Csmith: Random approach
» WarpGen-base: Do NOT update the operator pool and the top program set
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I RQ1: Efficiency of WarpGen

» Top 20 dist score for each generated test program during the iteration process
* Minimal: The threshold for updating distinguishable programs
» Average: the average quality of distinguishable programs

TABLE 11
STATISTICS OF TOP 20 dist score WHEN WarpGen GENERATED DIFFERENT NUMBERS OF TEST PROGRAMS.

#Programs 20 50 80 110 140 170 200 230 260 290 320 350 380 410 436
Minimal 0.023 0.149 0208 0.259| 0.454 10454 0454 0454 0454 0454 0454 0458 0459 0459 0459
Average 0.145 0.226 0266 0.392| 0.462 0462 0462 0462 0462 0462 0462 0479 0481 0481 0.481

WarpGen can generate high-quality test programs with high efficiency.
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I RQ2: Effectiveness of Guidance

« Comparison of top 20 dist score from different approaches
» Csmith: Random approach
» WarpGen-base: Do NOT update the operator pool and the top program set
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WarpGen can generate test programs of higher quality and
more quickly than the baseline approaches.
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» RQ3: New Performance Issues

* |dentify issues from the final top 20 distinguishable programs

TABLE III
PERFORMANCE ISSUES IDENTIFIED BY WarpGen.

ID Runtime Scenario Status
#7731  Wasmtime Floating-point (FP) arithmetic Fixed
#7732  Wasmtime Access of pointers to constant Confirmed
#7733 ~ Wasmtime  Increment operation in nested loops  Confirmed
#4378 Wasmer Operations on FP arrays Fixed
#4379 Wasmer Call of standard output functions Fixed
#4380 Wasmer Access of variable addresses Fixed
#2938 WAMR FP arithmetic Confirmed

WarpGen is effective to detect new performance issues in Wasm runtimes.
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J» Conclusion

A 3 Approach: WarpGen 9 2 RQ3: New Performance Issues

Aoy e

3 Approach Design Insights

* Adistinguishability-guided test program generation approach for Wasm runtime « Identify issues from the final top 20 distinguishable programs

Insight 1: Historical issue-triggering test programs contain information that performance testing

helps detect new issues. i e i
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] Programs H = | #7732 Wasmtime Access of pointers to constant Confirmed
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| Wasmti | Distngustabiy i #4378 Wasmer Operations on FP arrays Fixed
. . . n ! - = fasmtime | list score) ! #4379 Wasi Call of standard funct Fixed
“ Insight 2: The test oracle proposed by WarpDiff can inspire test program ; —> —® ‘ N B et ; o e e o L
quality verification. i et ™ #9338 WAMR FP arithmetic Confirmed
i Programs Operator Pool .
Practice: Propose an indicator distinguishability to guide test program i
generation process. . B ProgamSydiealsl] 00— : WarpGen is effective to detect new performance issues in Wasm runtimes.
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Insights Approach Evaluation
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