
Distinguishability-guided Test Program Generation
for WebAssembly Runtime Performance Testing

Shuyao Jiang1, Ruiying Zeng2, Yangfan Zhou2, Michael R. Lyu1

1. Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China

2. School of Computer Science, Fudan University, Shanghai, China

The 32nd IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER 2025)

• A binary instruction format
• Designed as a compilation target for programming languages
• Fast, safe, portable, lightweight

• Key component: Wasm runtime
• Translate Wasm binary instructions to native machine code

2

WebAssembly (Wasm)

Source Code

Compiler

Wasm Code
Wasm Runtime OS

WASI

Wasmtime

• Performance issues in Wasm runtimes
• Abnormal latency caused by runtime design flaws

• Impact of performance issues on Wasm service throughput [1]

• A 30ms-latency will result in up to 50% drop in service throughput

3

Performance Testing for Wasm Runtime

(a) 10,000 request (b) 50,000 request

[1] “Revealing Performance Issues in Server-side WebAssembly Runtimes via Differential Testing.” Shuyao Jiang, Ruiying Zeng, Zihao Rao, Jiazhen Gu, Yangfan Zhou, and Michael R. Lyu.
In Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023).

• A differential testing framework for identifying Wasm runtime performance issues
• Key idea: The execution time of the same test case on different Wasm runtimes should follow a

stable ratio (i.e., oracle ratio)

• Limitation of WarpDiff: Insufficient high-quality test programs
• Only use a small benchmark for testing

4

Existing Work: WarpDiff [1]

[1] “Revealing Performance Issues in Server-side WebAssembly Runtimes via Differential Testing.” Shuyao Jiang, Ruiying Zeng, Zihao Rao, Jiazhen Gu, Yangfan Zhou, and Michael R. Lyu.
In Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023).

• Our goal: Generate high-quality test programs for further testing
• What are high-quality test programs?
-- Tend to trigger performance issues in Wasm runtimes

5

Goal & Challenges

Challenge 2: Difficult to verify the quality of generated test
programs

Challenge 1: Lack of sufficient prior knowledge about Wasm
runtime performance

6

Approach Design Insights

Insight 2: The test oracle proposed by WarpDiff can inspire test program
quality verification.

Insight 1: Historical issue-triggering test programs contain information that
helps detect new issues.

Practice: Extract code snippets from historical abnormal cases, then insert
them in different contexts to generate new test programs.

Practice: Propose an indicator distinguishability to guide test program
generation process.

• A distinguishability-guided test program generation approach for Wasm runtime
performance testing

7

Approach: WarpGen

Wasm Code

Wasm Runtimes

…

Seed Pool

New Program

Distinguishable
Programs

Distinguishability
(dist score)

Seed
Programs

No

Yes

penalty +1

Operator Pool

Wasmtime

> Top N ?

Program Synthesis Program Quality Verification

• A critical challenge in program synthesis
• Ensure the validity of the synthesized program

8

Program Validity

Insertion Validity: The inserted operator should affect the behavior
of the seed program.

Syntax Validity: The synthesized program should conform to the
syntax rules and be able to pass compilation.

9

Data Preprocessing: Operator Extraction

• Sequential Operator
• A code block containing sequential statements without branches and loops.

• Branching Operator
• A code block containing conditional branching statements (i.e., if, else, and else if),

including conditions and corresponding code to be executed.

• Looping Operator
• A code block containing looping statements (i.e., for, while, and do-while), including loop

conditions and loop bodies. It may contain nested loops.

• Mixed Operator
• A code block containing a combination of

the above three operators.

Implementation: Clang tool based on LLVM Project

• Context recording: Pre-context & Post-context

10

Data Preprocessing: Operator Extraction

Pre-context
All used variables (excluding
variables declared and assigned in
this block) and called functions
(excluding standard library functions)
in this block.

Post-context
All variables assigned in this block
(excluding variables declared in this
block).

for(i = 1 ; i <= m-1 ; i++)
{

u = (double)i * x;
w = u * u;
s = s + w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one;

}

Pre-context:
{m, x, B6, B5, B4, B3, B2, B1, one}

Post-context:
{i, u, w, s}

Syntax Validity

Insertion Validity

Example

• Profiling information: Variable Usage & Code Coverage

11

Data Preprocessing: Seed Profiling

Variable Usage
All the declared variables in the seed program
• Position of first declared
• Position of last used

Syntax Validity

Code Coverage
Covered code lines during seed program
execution

Insertion Validity

12

Program Synthesis
• Given an operator and a seed, synthesize a program by two steps

• Step 1: Insertion point selection
• Traverse the code lines recorded in the code coverage of the seed

• Collect the current context (local/global variables) of the seed
• Read the pre/post contexts of the operator to check whether this line is a valid insertion point

• Randomly select a valid insertion point

• Step 2: Variable dependency handling
• Replace the variable in the operator with

another same-type variable in the seed
• Define a new variable

13

Iteration Process: Program Quality Indicator

• Distinguishability (dist score)

• Example
• X = [1,2,3] [0.17,0.33,0.5]
• Oracle ratio: O = [0.2,0.2,0.4]
• dist score(X) = EuDist(X,O) = 0.12

The distinguishability (dist score) of a test program is the Euclidean distance between the
normalized vector of its execution time ratio (on Wasm runtimes to be tested) and the
normalized vector of the oracle ratio.

Normalize

Wasm Code

Wasm Runtimes

…

Seed Pool

New Program

Distinguishable
Programs

Distinguishability
(dist score)

Seed
Programs

No

Yes

penalty +1

Operator Pool

Wasmtime

> Top N ?

Program Synthesis Program Quality Verification

Goal of iteration: Identify top N distinguishable programs (i.e., programs with top N dist score).

14

Iteration Process: Initial Iteration

• Initial operators: Extracted from abnormal cases reported by WarpDiff

• For each initial operator
• Insert it into a random seed --> new program
• Run the new program on several Wasm runtimes to calculate the dist score

• Collect the programs with top N dist score as distinguishable programs

• Extract operators from the distinguishable programs
• Add the new operators to the operator pool

15

Iteration Process: Follow-up Iterations

• Goal: Find new test programs with higher dist score than the previous top N

• To improve the efficiency of iteration: Penalty mechanism
• Assign a penalty (initial value = 0) for each operator

• Each time
• Randomly select an operator and a seed --> new program
• Calculate the dist score of the new program

• If dist score > previous top N: Mark as a new distinguishable program
• Else: penalty (of the selected operator) +1

• An operator with penalty > M will be removed

16

Iteration Process: The Whole Process

Wasm Code

Wasm Runtimes

…

Seed Pool

New Program

Distinguishable
Programs

Distinguishability
(dist score)

Seed
Programs

No

Yes

penalty +1

Operator Pool

Wasmtime

> Top N ?

Program Synthesis Program Quality Verification

17

Research Questions

RQ1: How efficient is WarpGen to generate high-quality test programs?

RQ2: How effective is the distinguishability-guided design in WarpGen?

RQ3: Can WarpGen detect new performance issues in Wasm runtimes?

• Wasm runtimes for testing
• Wasmer, Wasmtime, WasmEdge, WAMR

• Initial Operators
• 271 operators from 20 abnormal cases reported by WarpDiff

• Seed programs
• 100 random C programs generated by Csmith

• Parameters
• Oracle ratio: Based on the average execution time on the seed programs
• N = 20, M = 5

• Compared Approaches
• Csmith: Random approach
• WarpGen-base: Do NOT update the operator pool and the top program set

18

Experiment Settings

• Top 20 dist score for each generated test program during the iteration process
• Minimal: The threshold for updating distinguishable programs
• Average: the average quality of distinguishable programs

19

RQ1: Efficiency of WarpGen

WarpGen can generate high-quality test programs with high efficiency.

• Comparison of top 20 dist score from different approaches
• Csmith: Random approach
• WarpGen-base: Do NOT update the operator pool and the top program set

20

RQ2: Effectiveness of Guidance

WarpGen can generate test programs of higher quality and
more quickly than the baseline approaches.

• Identify issues from the final top 20 distinguishable programs

21

RQ3: New Performance Issues

WarpGen is effective to detect new performance issues in Wasm runtimes.

22

Conclusion

Insights Approach Evaluation

Presenter: Shuyao Jiang

Affiliation: The Chinese University of Hong Kong

Email: syjiang21@cse.cuhk.edu.hk

Pre-print Homepage

mailto:syjiang21@cse.cuhk.edu.hk

