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• A binary instruction format
• Designed as a compilation target for programming languages
• Fast, safe, portable, lightweight

• Key component: Wasm runtime
• Translate Wasm binary instructions to native machine code
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• Performance issues in Wasm runtimes
• Abnormal latency caused by runtime design flaws

• Impact of performance issues on Wasm service throughput [1]

• A 30ms-latency will result in up to 50% drop in service throughput
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Performance Testing for Wasm Runtime

(a) 10,000 request (b) 50,000 request

[1] “Revealing Performance Issues in Server-side WebAssembly Runtimes via Differential Testing.” Shuyao Jiang, Ruiying Zeng, Zihao Rao, Jiazhen Gu, Yangfan Zhou, and Michael R. Lyu. 
In Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023).



• A differential testing framework for identifying Wasm runtime performance issues
• Key idea: The execution time of the same test case on different Wasm runtimes should follow a

stable ratio (i.e., oracle ratio)

• Limitation of WarpDiff: Insufficient high-quality test programs
• Only use a small benchmark for testing
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Existing Work: WarpDiff [1]

[1] “Revealing Performance Issues in Server-side WebAssembly Runtimes via Differential Testing.” Shuyao Jiang, Ruiying Zeng, Zihao Rao, Jiazhen Gu, Yangfan Zhou, and Michael R. Lyu. 
In Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023).



• Our goal: Generate high-quality test programs for further testing
• What are high-quality test programs? 
-- Tend to trigger performance issues in Wasm runtimes
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Goal & Challenges

Challenge 2: Difficult to verify the quality of generated test 
programs

Challenge 1: Lack of sufficient prior knowledge about Wasm 
runtime performance
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Approach Design Insights

Insight 2: The test oracle proposed by WarpDiff can inspire test program 
quality verification.

Insight 1: Historical issue-triggering test programs contain information that 
helps detect new issues.

Practice: Extract code snippets from historical abnormal cases, then insert 
them in different contexts to generate new test programs.

Practice: Propose an indicator distinguishability to guide test program 
generation process. 



• A distinguishability-guided test program generation approach for Wasm runtime 
performance testing
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Approach: WarpGen
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• A critical challenge in program synthesis
• Ensure the validity of the synthesized program
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Program Validity

Insertion Validity: The inserted operator should affect the behavior 
of the seed program.

Syntax Validity: The synthesized program should conform to the 
syntax rules and be able to pass compilation.
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Data Preprocessing: Operator Extraction

• Sequential Operator
• A code block containing sequential statements without branches and loops.

• Branching Operator
• A code block containing conditional branching statements (i.e., if, else, and else if), 

including conditions and corresponding code to be executed.

• Looping Operator
• A code block containing looping statements (i.e., for, while, and do-while), including loop 

conditions and loop bodies. It may contain nested loops.

• Mixed Operator
• A code block containing a combination of 

the above three operators.

Implementation: Clang tool based on LLVM Project



• Context recording: Pre-context & Post-context
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Data Preprocessing: Operator Extraction

Pre-context
All used variables (excluding 
variables declared and assigned in 
this block) and called functions 
(excluding standard library functions) 
in this block.

Post-context
All variables assigned in this block 
(excluding variables declared in this 
block).

for( i = 1 ; i <= m-1 ; i++ )
{

u = (double)i * x;
w = u * u;
s = s + w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one;

}

Pre-context:
{m, x, B6, B5, B4, B3, B2, B1, one}

Post-context:
{i, u, w, s}

Syntax Validity

Insertion Validity

Example



• Profiling information: Variable Usage & Code Coverage
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Data Preprocessing: Seed Profiling

Variable Usage
All the declared variables in the seed program
• Position of first declared 
• Position of last used

Syntax Validity

Code Coverage
Covered code lines during seed program 
execution

Insertion Validity
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Program Synthesis
• Given an operator and a seed,  synthesize a program by two steps

• Step 1: Insertion point selection
• Traverse the code lines recorded in the code coverage of the seed

• Collect the current context (local/global variables) of the seed
• Read the pre/post contexts of the operator to check whether this line is a valid insertion point

• Randomly select a valid insertion point

• Step 2: Variable dependency handling
• Replace the variable in the operator with 

another same-type variable in the seed
• Define a new variable 
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Iteration Process: Program Quality Indicator

• Distinguishability (dist score)

• Example
• X = [1,2,3] [0.17,0.33,0.5]
• Oracle ratio: O = [0.2,0.2,0.4]
• dist score(X) = EuDist(X,O) = 0.12

The distinguishability (dist score) of a test program is the Euclidean distance between the 
normalized vector of its execution time ratio (on Wasm runtimes to be tested) and the 
normalized vector of the oracle ratio.

Normalize
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Goal of iteration: Identify top N distinguishable programs (i.e., programs with top N dist score).
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Iteration Process: Initial Iteration

• Initial operators: Extracted from abnormal cases reported by WarpDiff

• For each initial operator
• Insert it into a random seed --> new program
• Run the new program on several Wasm runtimes to calculate the dist score

• Collect the programs with top N dist score as distinguishable programs

• Extract operators from the distinguishable programs
• Add the new operators to the operator pool
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Iteration Process: Follow-up Iterations

• Goal: Find new test programs with higher dist score than the previous top N

• To improve the efficiency of iteration: Penalty mechanism
• Assign a penalty (initial value = 0) for each operator

• Each time
• Randomly select an operator and a seed --> new program
• Calculate the dist score of the new program

• If dist score > previous top N: Mark as a new distinguishable program
• Else: penalty (of the selected operator) +1

• An operator with penalty > M will be removed



16

Iteration Process: The Whole Process
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Research Questions

RQ1: How efficient is WarpGen to generate high-quality test programs?

RQ2: How effective is the distinguishability-guided design in WarpGen?

RQ3: Can WarpGen detect new performance issues in Wasm runtimes?



• Wasm runtimes for testing
• Wasmer, Wasmtime, WasmEdge, WAMR

• Initial Operators
• 271 operators from 20 abnormal cases reported by WarpDiff

• Seed programs
• 100 random C programs generated by Csmith

• Parameters
• Oracle ratio: Based on the average execution time on the seed programs
• N = 20, M = 5

• Compared Approaches
• Csmith: Random approach
• WarpGen-base: Do NOT update the operator pool and the top program set
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Experiment Settings



• Top 20 dist score for each generated test program during the iteration process
• Minimal: The threshold for updating distinguishable programs
• Average: the average quality of distinguishable programs
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RQ1: Efficiency of WarpGen

WarpGen can generate high-quality test programs with high efficiency.



• Comparison of top 20 dist score from different approaches
• Csmith: Random approach
• WarpGen-base: Do NOT update the operator pool and the top program set
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RQ2: Effectiveness of Guidance

WarpGen can generate test programs of higher quality and 
more quickly than the baseline approaches.



• Identify issues from the final top 20 distinguishable programs
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RQ3: New Performance Issues

WarpGen is effective to detect new performance issues in Wasm runtimes.
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Conclusion

Insights Approach Evaluation
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